IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5208-d1188394.html
   My bibliography  Save this article

Offshore Wind Farm in the Southeast Aegean Sea and Energy Security

Author

Listed:
  • Georgios Delagrammatikas

    (Independent Researcher, 18534 Piraeus, Greece
    This publication is part of the master thesis that was written by Mr. Georgios Delagrammatikas and was supervised by Associate Professor Spyridon Roukanas at the University of Piraeus, the School of Economics, Business and International Studies, the Department of International and European Studies, MSc in Energy: Strategy, Law & Economics.)

  • Spyridon Roukanas

    (Department of International and European Studies, University of Piraeus, 126 Grigoriou Lambraki Street, 18534 Piraeus, Greece
    This publication is part of the master thesis that was written by Mr. Georgios Delagrammatikas and was supervised by Associate Professor Spyridon Roukanas at the University of Piraeus, the School of Economics, Business and International Studies, the Department of International and European Studies, MSc in Energy: Strategy, Law & Economics.)

Abstract

This paper deals with the creation, in realistic terms, of an offshore wind farm between the Greek islands of Karpathos and Kassos in the Dodecanese complex. In this context, the terms and conditions for the possible existence of an offshore wind park in Greece are analyzed; the technical components of such a project are described; the offshore wind farm, which was designed by the authors, is presented in detail; and the location selected for its installation is assessed. Moreover, the benefits for the islands of Karpathos and Kassos and for the Greek State, as well as financial data adapted to this specific offshore wind farm and SWOT analysis for the two phases of the project, are presented. The authors conclude that an investment in this project would be viable in economic terms and feasible, despite it being a small-scale project.

Suggested Citation

  • Georgios Delagrammatikas & Spyridon Roukanas, 2023. "Offshore Wind Farm in the Southeast Aegean Sea and Energy Security," Energies, MDPI, vol. 16(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5208-:d:1188394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    2. Adelaja, Adesoji & McKeown, Charles & Calnin, Benjamin & Hailu, Yohannes, 2012. "Assessing offshore wind potential," Energy Policy, Elsevier, vol. 42(C), pages 191-200.
    3. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escobar, A. & Negro, V. & López-Gutiérrez, J.S. & Esteban, M.D., 2019. "Assessment of the influence of the acceleration field on scour phenomenon in offshore wind farms," Renewable Energy, Elsevier, vol. 136(C), pages 1036-1043.
    2. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    3. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    4. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    5. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    6. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    7. Sultan Salem & Noman Arshed & Ahsan Anwar & Mubasher Iqbal & Nyla Sattar, 2021. "Renewable Energy Consumption and Carbon Emissions—Testing Nonlinearity for Highly Carbon Emitting Countries," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    8. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    9. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    10. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    11. Wu, Zhuochun & Xiao, Liye, 2019. "A structure with density-weighted active learning-based model selection strategy and meteorological analysis for wind speed vector deterministic and probabilistic forecasting," Energy, Elsevier, vol. 183(C), pages 1178-1194.
    12. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    13. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    14. Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
    15. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    16. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    17. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    18. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    20. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5208-:d:1188394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.