IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp1178-1194.html
   My bibliography  Save this article

A structure with density-weighted active learning-based model selection strategy and meteorological analysis for wind speed vector deterministic and probabilistic forecasting

Author

Listed:
  • Wu, Zhuochun
  • Xiao, Liye

Abstract

Accurate wind speed forecasting ensures the controllability for the wind power system. In this paper, a structure with density-weighted active learning (DWAL)-based model selection strategy from the perspective of meteorological factors is proposed to improve the accuracy and stability for wind speed deterministic and probabilistic forecasting. To improve training efficiency and accelerate the sample selection process, DWAL is employed. The multi-objective flower pollination algorithm is used to combine best models selected from model space with optimal weights for higher accuracy and stability. Except deterministic forecasts, as large-scale wind power generation integrated into power grid, the wind direction should also be forecasted and the estimation of the wind speed and direction uncertainty is vital, offering various aspects of forecasts for risk management. Thus, both deterministic and probabilistic forecasting for the wind speed vector are included in this paper. Eight datasets from Ontario Province, Canada, are utilized to evaluate forecasting performance of the model selection and the proposed structure. Results demonstrated: (a) the proposed structure is suitable for wind speed vector forecasting; (b) the proposed structure obtains more precise and stable forecasting performance; (c) the proposed structure improves the accuracy of deterministic forecasting and provides probabilistic information for wind speed vector forecasting.

Suggested Citation

  • Wu, Zhuochun & Xiao, Liye, 2019. "A structure with density-weighted active learning-based model selection strategy and meteorological analysis for wind speed vector deterministic and probabilistic forecasting," Energy, Elsevier, vol. 183(C), pages 1178-1194.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1178-1194
    DOI: 10.1016/j.energy.2019.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falamarzi, Yashar & Palizdan, Narges & Huang, Yuk Feng & Lee, Teang Shui, 2014. "Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)," Agricultural Water Management, Elsevier, vol. 140(C), pages 26-36.
    2. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    3. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
    4. Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
    5. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    6. Wang, Jianzhou & Heng, Jiani & Xiao, Liye & Wang, Chen, 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting," Energy, Elsevier, vol. 125(C), pages 591-613.
    7. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    8. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
    2. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    3. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    4. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhuochun & Xia, Xiangjie & Xiao, Liye & Liu, Yilin, 2020. "Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 261(C).
    2. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    3. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    4. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    5. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    6. Wu, Jinran & Cui, Zhesen & Chen, Yanyan & Kong, Demeng & Wang, You-Gan, 2019. "A new hybrid model to predict the electrical load in five states of Australia," Energy, Elsevier, vol. 166(C), pages 598-609.
    7. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    8. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
    9. Peng Lu & Lin Ye & Bohao Sun & Cihang Zhang & Yongning Zhao & Jingzhu Teng, 2018. "A New Hybrid Prediction Method of Ultra-Short-Term Wind Power Forecasting Based on EEMD-PE and LSSVM Optimized by the GSA," Energies, MDPI, vol. 11(4), pages 1-23, March.
    10. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    11. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting," Applied Energy, Elsevier, vol. 198(C), pages 203-222.
    12. Rui Wang & Jingrui Li & Jianzhou Wang & Chengze Gao, 2018. "Research and Application of a Hybrid Wind Energy Forecasting System Based on Data Processing and an Optimized Extreme Learning Machine," Energies, MDPI, vol. 11(7), pages 1-29, July.
    13. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    14. Tonglin Fu & Chen Wang, 2018. "A Hybrid Wind Speed Forecasting Method and Wind Energy Resource Analysis Based on a Swarm Intelligence Optimization Algorithm and an Artificial Intelligence Model," Sustainability, MDPI, vol. 10(11), pages 1-24, October.
    15. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    16. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    17. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    18. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    19. Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
    20. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1178-1194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.