IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13302-d1233243.html
   My bibliography  Save this article

Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System

Author

Listed:
  • Shekaina Justin

    (Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Wafaa Saleh

    (Visiting Professor, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Maha M. A. Lashin

    (Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Hind Mohammed Albalawi

    (Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

Abstract

Climate control in a pixel non-uniformity metro system includes regulating the air, humidity, and temperature quality within metro trains and stations to ensure passenger comfort and safety. The climate control system in a PNU metro system combines intelligent algorithms, energy-efficient practices, and advanced technologies to make a healthy and comfortable environment for passengers while reducing energy consumption. The proposed an automated climate control using an improved salp swarm algorithm with an optimal ensemble learning technique examines the underlying factors, including indoor air temperature, wind direction, indoor air relative humidity, light sensor 1 (wavelength), return air relative humidity, supply air temperature, wind speed, supply air relative humidity, airflow rate, and return air temperature. Moreover, this new proposed technique applies ISSA to elect an optimal set of features. Then, the climate control process takes place using an ensemble learning approach comprising long short-term memory, gated recurrent unit, and recurrent neural network. Lastly, the Harris hawks optimization algorithm can be employed to adjust the hyperparameters related to the ensemble learning models. The extensive results demonstrated the supremacy of the proposed algorithms over other approaches to the climate control process on PNU metro systems.

Suggested Citation

  • Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13302-:d:1233243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Xianghui & Li, Kuining & Xie, Yi & Liu, Bin & Liu, Jiangyan & Liu, Zhaoming & Mou, Lunjie, 2022. "A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm," Energy, Elsevier, vol. 241(C).
    2. Lilin Cheng & Haixiang Zang & Tao Ding & Rong Sun & Miaomiao Wang & Zhinong Wei & Guoqiang Sun, 2018. "Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach," Energies, MDPI, vol. 11(8), pages 1-23, July.
    3. Kyung-Bin Kwon & Su-Min Hong & Jae-Haeng Heo & Hosung Jung & Jong-young Park, 2022. "A Machine Learning-Based Energy Management Agent for Fine Dust Concentration Control in Railway Stations," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    4. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    5. Rimantas Barauskas & Andrius Kriščiūnas & Dalia Čalnerytė & Paulius Pilipavičius & Tautvydas Fyleris & Vytautas Daniulaitis & Robertas Mikalauskis, 2022. "Approach of AI-Based Automatic Climate Control in White Button Mushroom Growing Hall," Agriculture, MDPI, vol. 12(11), pages 1-25, November.
    6. Wafaa Saleh & Shekaina Justin & Ghada Alsawah & Tasneem Al Ghamdi & Maha M. A. Lashin, 2021. "Control Strategies for Energy Efficiency at PNU’s Metro System," Energies, MDPI, vol. 14(20), pages 1-13, October.
    7. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    2. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    3. Zhigao Liu & Ruixin Zhang & Jiayi Ma & Wenyu Zhang & Lin Li, 2023. "Analysis and Prediction of the Meteorological Characteristics of Dust Concentrations in Open-Pit Mines," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    4. Giacomo Valente & Vittoriano Muttillo & Mirco Muttillo & Gianluca Barile & Alfiero Leoni & Walter Tiberti & Luigi Pomante, 2019. "SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators Interfacing for Industry 4.0 Applications," Energies, MDPI, vol. 12(9), pages 1-13, April.
    5. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    6. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    8. Ziyu Bai & Guoqiang Sun & Haixiang Zang & Ming Zhang & Peifeng Shen & Yi Liu & Zhinong Wei, 2019. "Identification Technology of Grid Monitoring Alarm Event Based on Natural Language Processing and Deep Learning in China," Energies, MDPI, vol. 12(17), pages 1-19, August.
    9. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    10. Vo-Van Thanh & Wencong Su & Bin Wang, 2022. "Optimal DC Microgrid Operation with Model Predictive Control-Based Voltage-Dependent Demand Response and Optimal Battery Dispatch," Energies, MDPI, vol. 15(6), pages 1-19, March.
    11. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    12. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    13. Francesco Smarra & Giovanni Domenico Di Girolamo & Vincenzo Gattulli & Fabio Graziosi & Alessandro D’Innocenzo, 2020. "Learning Models for Seismic-Induced Vibrations Optimal Control in Structures via Random Forests," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 855-874, December.
    14. Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
    15. Suyang Zhou & Di He & Zhiyang Zhang & Zhi Wu & Wei Gu & Junjie Li & Zhe Li & Gaoxiang Wu, 2019. "A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    16. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    18. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    19. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    20. Huang, Bowen & Huang, Sen & Ma, Xu & Katipamula, Srinivas & Wu, Di & Lutes, Robert, 2023. "Stochastic scheduling for commercial building cooling systems: considering uncertainty in zone temperature prediction," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13302-:d:1233243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.