IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4837-d1091778.html
   My bibliography  Save this article

Analysis and Prediction of the Meteorological Characteristics of Dust Concentrations in Open-Pit Mines

Author

Listed:
  • Zhigao Liu

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Ruixin Zhang

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    College of Computer Science, North China University of Science and Technology, Sanhe 065201, China)

  • Jiayi Ma

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Wenyu Zhang

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Lin Li

    (China National Energy Investment Group Co., Ltd., Beijing 100011, China
    State Key Laboratory of Coal Mining Water Resources Protection and Utilization, Beijing 102209, China)

Abstract

Based on the dust concentration data and meteorological environment data monitored at the open-pit mine site, the characteristics of dust concentration and the influence of temperature, humidity, wind speed, air pressure and other meteorological conditions on dust concentration were analyzed, and the causes of the change of dust concentration were clarified. Meanwhile, a dust concentration prediction model based on LSTM neural network is established. The results show that the dust concentration of the open-pit mine is high in March, November and the whole winter, and it is low in summer and autumn. The daily variation of humidity and temperature in different seasons showed the trend of “herringbone” and “inverted herringbone”, respectively. In addition, the wind speed was the highest in spring and the air pressure distribution was uniform, which basically maintained at 86–88 kPa. The peak humidity gradually deviates with each month and is obviously affected by seasonality. The higher the humidity, the lower the temperature and the higher the concentration of dust. In different seasons, the wind speed is the highest around 20:00 at night, and the dust is easy to disperse. The R 2 values of PM2.5, PM10 and TSP concentrations predicted by LSTM model are 0.88, 0.87 and 0.87, respectively, which were smaller than the MAE, MAPE and RMSE values of other prediction models, and the prediction effect was better with lower error. The research results can provide a theoretical basis for dust distribution law, concentration prediction and dust removal measures of main dust sources in open-pit mines.

Suggested Citation

  • Zhigao Liu & Ruixin Zhang & Jiayi Ma & Wenyu Zhang & Lin Li, 2023. "Analysis and Prediction of the Meteorological Characteristics of Dust Concentrations in Open-Pit Mines," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4837-:d:1091778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    2. Kyung-Bin Kwon & Su-Min Hong & Jae-Haeng Heo & Hosung Jung & Jong-young Park, 2022. "A Machine Learning-Based Energy Management Agent for Fine Dust Concentration Control in Railway Stations," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    3. Svetlana Ivanova & Anna Vesnina & Nataly Fotina & Alexander Prosekov, 2022. "An Overview of Carbon Footprint of Coal Mining to Curtail Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayaz, Muhammad & Jehan, Noor & Nakonieczny, Joanna & Mentel, Urszula & uz zaman, Qamar, 2022. "Health costs of environmental pollution faced by underground coal miners: Evidence from Balochistan, Pakistan," Resources Policy, Elsevier, vol. 76(C).
    2. Yongmao Xiao & Renqing Zhao & Wei Yan & Xiaoyong Zhu, 2022. "Analysis and Evaluation of Energy Consumption and Carbon Emission Levels of Products Produced by Different Kinds of Equipment Based on Green Development Concept," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    3. Li Fan & Weiping Zhao & Wendan Feng & Ping Mo & Yunlin Zhao & Guiyan Yang & Zhenggang Xu, 2021. "Insight into the Characteristics of Soil Microbial Diversity during the Ecological Restoration of Mines: A Case Study in Dabaoshan Mining Area, China," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    4. Nicolas Charles & Gaétan Lefebvre & Rémy Tuloup & Audrey Carreaud & Antoine Boubault & Anne-Sophie Serrand & Maxime Picault & Virginie Piguet & Valeria Manzin & Fabien Deswarte & Julien Aupoil, 2023. "Mineral Resource Abundance: An Assessment Methodology for a Responsible Use of Mineral Raw Materials in Downstream Industries," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
    5. Zheng, Ye & Tarczyński, Waldemar & Jamróz, Paweł & Ali Raza, Syed & Tiwari, Sunil, 2024. "Impacts of mineral resources, economic growth and energy consumption on environmental sustainability: Novel findings from global south region," Resources Policy, Elsevier, vol. 92(C).
    6. Jin, Haifeng, 2023. "Analyzing factors and resource policymaking options for sustainable resource management and carbon neutrality in mining industry: Empirical study in China," Resources Policy, Elsevier, vol. 86(PB).
    7. Boyu Luan & Wei Zhou & Izhar Mithal Jiskani & Zhiming Wang, 2023. "An Improved Machine Learning Approach for Optimizing Dust Concentration Estimation in Open-Pit Mines," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    8. Leng, Zhihui & Sun, Han & Cheng, Jinhua & Wang, Hai & Yao, Zhen, 2021. "China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents," Resources Policy, Elsevier, vol. 73(C).
    9. Yang, Xiao & Anser, Muhammad Khalid & Yusop, Zulkornain & Abbas, Shujaat & Khan, Muhammad Azhar & Zaman, Khalid, 2022. "Volatility in mineral resource pricing causes ecological footprints: A cloud on the horizon," Resources Policy, Elsevier, vol. 77(C).
    10. Hosseini, Shahab & Mousavi, Amin & Monjezi, Masoud & Khandelwal, Manoj, 2022. "Mine-to-crusher policy: Planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach," Resources Policy, Elsevier, vol. 79(C).
    11. Ekaterina Blinova & Tatyana Ponomarenko & Valentin Knysh, 2022. "Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy," Sustainability, MDPI, vol. 14(13), pages 1-30, July.
    12. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    13. Liu, Yang & Wu, Ailing & Wang, Jianda & Taghizadeh-Hesary, Farhad & Dong, Xiucheng, 2024. "Green growth in the global south: How does metallic minerals affect GTFP enhancement?," Resources Policy, Elsevier, vol. 88(C).
    14. Jinhui Chen & Izhar Mithal Jiskani & Aiguo Lin & Chaocheng Zhao & Peixing Jing & Fengjie Liu & Mingyin Lu, 2023. "A hybrid decision model and case study for comprehensive evaluation of green mine construction level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3823-3842, April.
    15. Upadhyay, Saurabh, 2022. "Drivers for sustainable mining waste management – A mixed-method study on the Indian Mining Industry," Resources Policy, Elsevier, vol. 79(C).
    16. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Zheng, Yonghong & Qian, Qi & Tian, Yajun & Xie, Kechang, 2022. "Comparative resource-environment-economy assessment of coal- and oil-based aromatics production," Resources Policy, Elsevier, vol. 77(C).
    17. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    18. Irfan, Muhammad & Rehman, Mubeen Abdur & Razzaq, Asif & Hao, Yu, 2023. "What derives renewable energy transition in G-7 and E-7 countries? The role of financial development and mineral markets," Energy Economics, Elsevier, vol. 121(C).
    19. Poormirzaee, Rashed & Hosseini, Shahab & Taghizadeh, Rahim, 2022. "Smart mining policy: Integrating fuzzy-VIKOR technique and the Z-number concept to implement industry 4.0 strategies in mining engineering," Resources Policy, Elsevier, vol. 77(C).
    20. Shengzhe Ruan & Yi Song & Jinhua Cheng & Cheng Zhan, 2023. "Green Eco-Innovation and Supply of Critical Metals: Evidence from China," Sustainability, MDPI, vol. 15(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4837-:d:1091778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.