IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031522.html
   My bibliography  Save this article

A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm

Author

Listed:
  • Huang, Xianghui
  • Li, Kuining
  • Xie, Yi
  • Liu, Bin
  • Liu, Jiangyan
  • Liu, Zhaoming
  • Mou, Lunjie

Abstract

This study establishes a passenger cabin-coupled air conditioning model that the heat exchangers adopted in the air conditioning model, are calibrated by testing, during which the parameters for establishing the passenger cabin model are measured. The cabin temperature simulation results of the air conditioning model proposed in this paper fit well with the test results, with a maximum difference of 3 °C. A genetic algorithm (GA) optimization-based multistage constant-compressor speed (MCCS) air conditioning system control strategy is proposed. This control strategy sets the cabin temperature as the input control factor and the compressor speed as the output factor, and different cabin temperature ranges correspond to the MCCSs, which are optimized by the GA. The presented strategy is contrasted with the most commonly used on/off controllers and the proportional integral derivative (PID) controller, and an engineering-applied (EA) air conditioning control strategy. The proposed controller can maintain passenger cabin thermal comfort and save energy simultaneously, and it can be easily applied in engineering. Based on the simulation results, the MCCS controller can save 17.5, 7.5, and 5.8% more energy consumption than the on/off, PID, and EA controllers. Moreover, it can improve the coefficient of performance of the air conditioning system by 5.3 and 3.9% more than the PID and EA controllers. Therefore, the proposed MCCS controller can increase the operation efficiency of electric vehicles AC system.

Suggested Citation

  • Huang, Xianghui & Li, Kuining & Xie, Yi & Liu, Bin & Liu, Jiangyan & Liu, Zhaoming & Mou, Lunjie, 2022. "A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031522
    DOI: 10.1016/j.energy.2021.122903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fleming, Evan & Wen, Shaoyi & Shi, Li & da Silva, Alexandre K., 2013. "Thermodynamic model of a thermal storage air conditioning system with dynamic behavior," Applied Energy, Elsevier, vol. 112(C), pages 160-169.
    2. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    3. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    7. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yihang & Dan, Dan & Zheng, Siyu & Wei, Mingshan & Xie, Yi, 2023. "A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion," Energy, Elsevier, vol. 267(C).
    2. Qu, Ke & Barreto, Germilly & Iten, Muriel & Wang, Yuhao & Riffat, Saffa, 2023. "Energy and thermal performance of optimised hollow fibre liquid desiccant cooling and dehumidification systems in mediterranean regions: Modelling, validation and case study," Energy, Elsevier, vol. 263(PC).
    3. Hailong Yang & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang & Yan Wang & Yuting Wu, 2023. "Experimental Investigation on the Performance of Compressors for Small-Scale Compressed Air Energy Storage in Parallel Mode," Sustainability, MDPI, vol. 15(17), pages 1-29, September.
    4. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    5. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    6. Ali Alahmer & Rania M. Ghoniem, 2023. "Improving Automotive Air Conditioning System Performance Using Composite Nano-Lubricants and Fuzzy Modeling Optimization," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    7. Xiaoxiao Ding & Weirong Zhang & Zhen Yang & Jiajun Wang & Lingtao Liu & Dalong Gao & Dongdong Guo & Jianyin Xiong, 2022. "Effect of Open-Window Gaps on the Thermal Environment inside Vehicles Exposed to Solar Radiation," Energies, MDPI, vol. 15(17), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Hongwen & Yan, Mei & Sun, Chao & Peng, Jiankun & Li, Menglin & Jia, Hui, 2018. "Predictive air-conditioner control for electric buses with passenger amount variation forecast☆," Applied Energy, Elsevier, vol. 227(C), pages 249-261.
    2. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Xu Hu & Yisong Chen & Zhensen Ding & Liang Gu, 2019. "Vehicle Optimal Control Design to Meet the 1.5 °C Target: A Control Design Framework for Vehicle Subsystems," Energies, MDPI, vol. 12(16), pages 1-21, August.
    4. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    5. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    6. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    7. Wu, Jing & Tremeac, Brice & Terrier, Marie-France & Charni, Mehdi & Gagnière, Emilie & Couenne, Françoise & Hamroun, Boussad & Jallut, Christian, 2016. "Experimental investigation of the dynamic behavior of a large-scale refrigeration – PCM energy storage system. Validation of a complete model," Energy, Elsevier, vol. 116(P1), pages 32-42.
    8. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    9. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    10. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    11. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Farah, Sleiman & Liu, Ming & Saman, Wasim, 2019. "Numerical investigation of phase change material thermal storage for space cooling," Applied Energy, Elsevier, vol. 239(C), pages 526-535.
    13. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    14. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    15. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    16. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    17. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    18. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    19. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    20. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.