IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15550-d980949.html
   My bibliography  Save this article

A Machine Learning-Based Energy Management Agent for Fine Dust Concentration Control in Railway Stations

Author

Listed:
  • Kyung-Bin Kwon

    (Department of Electrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA)

  • Su-Min Hong

    (Raon Friends, 267 Simin-daero, Dongan-gu, Anyang-si 14054, Gyeonggi-do, Republic of Korea)

  • Jae-Haeng Heo

    (Raon Friends, 267 Simin-daero, Dongan-gu, Anyang-si 14054, Gyeonggi-do, Republic of Korea)

  • Hosung Jung

    (Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Gyeonggi-do, Republic of Korea)

  • Jong-young Park

    (Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Gyeonggi-do, Republic of Korea)

Abstract

This study developed a reinforcement learning-based energy management agent that controls the fine dust concentration by controlling facilities such as blowers and air conditioners to efficiently manage the fine dust concentration in the station. To this end, we formulated an optimization problem based on the Markov decision-making process and developed a model for predicting the concentration of fine dust in the station by training an artificial neural network (ANN) based on supervised learning to develop the transfer function. In addition to the prediction model, the optimal policy for controlling the blower and air conditioner according to the current state was obtained based on the ANN to which the Deep Q-Network (DQN) algorithm was applied. In the case study, it is confirmed that the ANN and DQN of the predictive model were trained based on the actual data of Nam-Gwangju Station to converge to the optimal policy. The comparison between the proposed method and conventional method shows that the proposed method can use less power consumption but achieved better performance on reducing fine dust concentration than the conventional method. In addition, by increasing the value of the ratio that represents the compensation due to the fine dust reduction, the learned agent achieved more reduction on the fine dust concentration by increasing the power consumption of the blower and air conditioner.

Suggested Citation

  • Kyung-Bin Kwon & Su-Min Hong & Jae-Haeng Heo & Hosung Jung & Jong-young Park, 2022. "A Machine Learning-Based Energy Management Agent for Fine Dust Concentration Control in Railway Stations," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15550-:d:980949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Zhigao Liu & Ruixin Zhang & Jiayi Ma & Wenyu Zhang & Lin Li, 2023. "Analysis and Prediction of the Meteorological Characteristics of Dust Concentrations in Open-Pit Mines," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    2. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    3. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    4. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    5. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    6. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    7. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    8. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    9. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    10. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    11. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    12. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    13. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    14. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    15. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    16. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    17. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    18. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    19. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    20. Tri-Hai Nguyen & Laihyuk Park, 2023. "HAP-Assisted RSMA-Enabled Vehicular Edge Computing: A DRL-Based Optimization Framework," Mathematics, MDPI, vol. 11(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15550-:d:980949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.