IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2140-d771582.html
   My bibliography  Save this article

Optimal DC Microgrid Operation with Model Predictive Control-Based Voltage-Dependent Demand Response and Optimal Battery Dispatch

Author

Listed:
  • Vo-Van Thanh

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Bin Wang

    (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

Recently, the integration of optimal battery dispatch and demand response has received much attention in improving DC microgrid operation under uncertainties in the grid-connect condition and distributed generations. However, the majority of prior studies on demand response considered the characteristics of global frequency variable instead of the local voltage for adjusting loads, which has led to obstacles in operating DC microgrids in the context of increasingly rising power electronic loads. Moreover, the consideration of voltage-dependent demand response and optimal battery dispatch has posed challenges for the traditional planning methods, such as stochastic programming, because of nonlinear constraints. Considering these facts, this paper proposes a model predictive control-based integrated voltage-based demand response and batteries’ optimal dispatch operation for minimizing the entire DC microgrid’s operating cost. In the proposed model predictive control approach, the binary decisions about voltage-dependent demand response and charging or discharging status of storage batteries are determined using a deep-Q network-based reinforcement learning method to handle uncertainties in various operating conditions (e.g., AC grid-connect faults and DC sources variations). It also helps to improve the DC microgrid operation efficiency in the two aspects: continuously avoiding load shedding or shifting and reducing the batteries’ charge and discharge cycles to prolong their service life. Finally, the proposed method is validated by comparing to the stochastic programming-based model predictive control method. Simulation results show that the proposed method obtains convergence with approximately 41.95% smaller operating cost than the stochastic optimization-based model predictive control method.

Suggested Citation

  • Vo-Van Thanh & Wencong Su & Bin Wang, 2022. "Optimal DC Microgrid Operation with Model Predictive Control-Based Voltage-Dependent Demand Response and Optimal Battery Dispatch," Energies, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2140-:d:771582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanaz Sabzevari & Rasool Heydari & Maryam Mohiti & Mehdi Savaghebi & Jose Rodriguez, 2021. "Model-Free Neural Network-Based Predictive Control for Robust Operation of Power Converters," Energies, MDPI, vol. 14(8), pages 1-12, April.
    2. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    3. Hu, Jiefeng & Xu, Yinliang & Cheng, Ka Wai & Guerrero, Josep M., 2018. "A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions," Applied Energy, Elsevier, vol. 221(C), pages 195-203.
    4. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    5. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    6. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2019. "Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations," Applied Energy, Elsevier, vol. 237(C), pages 695-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivam Chaturvedi & Mengqi Wang & Yaoyu Fan & Deepak Fulwani & Guilherme Vieira Hollweg & Shahid Aziz Khan & Wencong Su, 2023. "Control Methodologies to Mitigate and Regulate Second-Order Ripples in DC–AC Conversions and Microgrids: A Brief Review," Energies, MDPI, vol. 16(2), pages 1-34, January.
    2. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    3. Marvin Lema & Wilson Pavon & Leony Ortiz & Ama Baduba Asiedu-Asante & Silvio Simani, 2022. "Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability," Energies, MDPI, vol. 15(15), pages 1-15, July.
    4. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    5. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    6. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    7. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    8. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    9. Giacomo Valente & Vittoriano Muttillo & Mirco Muttillo & Gianluca Barile & Alfiero Leoni & Walter Tiberti & Luigi Pomante, 2019. "SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators Interfacing for Industry 4.0 Applications," Energies, MDPI, vol. 12(9), pages 1-13, April.
    10. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    11. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    12. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    13. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    14. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    16. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    18. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    19. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    20. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2140-:d:771582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.