IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v291y2021ics0306261921003093.html
   My bibliography  Save this article

Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence

Author

Listed:
  • Chakraborty, Debaditya
  • Alam, Arafat
  • Chaudhuri, Saptarshi
  • Başağaoğlu, Hakan
  • Sulbaran, Tulio
  • Langar, Sandeep

Abstract

In this paper, we present a newly developed eXplainable artificial intelligence (XAI) model to analyze the impacts of climate change on the cooling energy consumption (Ec) in buildings, predict long-term Ec under the new shared socioeconomic pathway (SSP) climate change scenarios, and explain the underlying reasons behind the predictions. Such analyses and future predictions are imperative to allow decision-makers and stakeholders to accomplish climate-resilient and sustainable development goals by leveraging the power of meaningful and trustworthy projections and insights. We demonstrated that the XAI is capable of predicting the Ec under future climate scenarios with high accuracy (R2>0.9) and reveals the critical inflection points of the daily average outdoor air temperature (Ta) beyond which the Ec increase exponentially. We applied the XAI model for residential and commercial buildings in hot–humid and mixed–humid climate regions to quantify the incremental impacts of climate change on Ec under the different SSPs. The XAI-based analysis concluded positive and persistent incremental changes in the Ec from 2020 to 2100 under all future SSP scenarios, with the maximum incremental impact of 24.5%, 33.3%, 57.8%, and 87.2% in hot–humid and 37.1%, 47.5%, 85.3%, and 121% in mixed–humid climate regions under the sustainable green energy (SSP126), business-as-usual (SSP245), challenges to adaptation (SSP370), and increased reliance on fossil fuels (SSP585) scenarios, respectively. Potential increases in the Ec in future climates could have significant adverse impacts on the local and regional economy if necessary adaptation and mitigation measures are not implemented a priori.

Suggested Citation

  • Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003093
    DOI: 10.1016/j.apenergy.2021.116807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    2. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    4. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    5. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    6. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    7. Caroline Zimm & Frank Sperling & Sebastian Busch, 2018. "Identifying Sustainability and Knowledge Gaps in Socio-Economic Pathways Vis-à-Vis the Sustainable Development Goals," Economies, MDPI, vol. 6(2), pages 1-22, March.
    8. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    9. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    10. Troup, Luke & Eckelman, Matthew J. & Fannon, David, 2019. "Simulating future energy consumption in office buildings using an ensemble of morphed climate data," Applied Energy, Elsevier, vol. 255(C).
    11. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 0. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press, vol. 36(Supplemen), pages 359-381.
    12. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    13. Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
    14. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    15. Graham Simpkins, 2017. "Progress in climate modelling," Nature Climate Change, Nature, vol. 7(10), pages 684-685, October.
    16. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    17. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    18. Rubio-Bellido, Carlos & Pérez-Fargallo, Alexis & Pulido-Arcas, Jesús A., 2016. "Optimization of annual energy demand in office buildings under the influence of climate change in Chile," Energy, Elsevier, vol. 114(C), pages 569-585.
    19. Westermann, Paul & Welzel, Matthias & Evins, Ralph, 2020. "Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones," Applied Energy, Elsevier, vol. 278(C).
    20. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    21. Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
    22. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    23. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    24. Papakostas, K. & Mavromatis, T. & Kyriakis, N., 2010. "Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece," Renewable Energy, Elsevier, vol. 35(7), pages 1376-1379.
    25. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    4. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    5. Bass, Brett & New, Joshua, 2023. "How will United States commercial building energy use be impacted by IPCC climate scenarios?," Energy, Elsevier, vol. 263(PE).
    6. van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
    7. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    8. Yang, Cai & Zhang, Hongwei & Weng, Futian, 2024. "Effects of COVID-19 vaccination programs on EU carbon price forecasts: Evidence from explainable machine learning," International Review of Financial Analysis, Elsevier, vol. 91(C).
    9. Shajalal, Md & Boden, Alexander & Stevens, Gunnar, 2024. "ForecastExplainer: Explainable household energy demand forecasting by approximating shapley values using DeepLIFT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    10. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2024. "How does green fiscal expenditure promote green total factor energy efficiency? — Evidence from Chinese 254 cities," Applied Energy, Elsevier, vol. 353(PA).
    11. Alireza Karimi & You Joung Kim & Negar Mohammad Zadeh & Antonio García-Martínez & Shahram Delfani & Robert D. Brown & David Moreno-Rangel & Pir Mohammad, 2022. "Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    2. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    3. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    6. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    7. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    8. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    9. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Zhu Liu & Zhu Deng & Philippe Ciais & Jianguang Tan & Biqing Zhu & Steven J. Davis & Robbie Andrew & Olivier Boucher & Simon Ben Arous & Pep Canadel & Xinyu Dou & Pierre Friedlingstein & Pierre Gentin, 2021. "Global Daily CO$_2$ emissions for the year 2020," Papers 2103.02526, arXiv.org.
    11. Stern, Nicholas & Valero, Anna, 2021. "Innovation, growth and the transition to net-zero emissions," Research Policy, Elsevier, vol. 50(9).
    12. Paul Malliet & Frédéric Reynès & Gissela Landa & Meriem Hamdi-Cherif & Aurélien Saussay, 2020. "Assessing Short-Term and Long-Term Economic and Environmental Effects of the COVID-19 Crisis in France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 867-883, August.
    13. Apostolou, Apostolos & Papaioannou, Michael, 2021. "Towards Greening Finance: Integration of Environmental Factors in Risk Management & Impact of Climate Risks on Asset Portfolios," MPRA Paper 106779, University Library of Munich, Germany.
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    15. Carla Barlagne & Mariana Melnykovych & David Miller & Richard J. Hewitt & Laura Secco & Elena Pisani & Maria Nijnik, 2021. "What Are the Impacts of Social Innovation? A Synthetic Review and Case Study of Community Forestry in the Scottish Highlands," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    16. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    17. Candice Howarth & Peter Bryant & Adam Corner & Sam Fankhauser & Andy Gouldson & Lorraine Whitmarsh & Rebecca Willis, 2020. "Building a Social Mandate for Climate Action: Lessons from COVID-19," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1107-1115, August.
    18. Shaikh Eskander & Sam Fankhauser & Joana Setzer, 2021. "Global Lessons from Climate Change Legislation and Litigation," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 44-82.
    19. Nghiem, Son & Tran, Bach & Afoakwah, Clifford & Byrnes, Joshua & Scuffham, Paul, 2021. "Wealthy, healthy and green: Are we there yet?," World Development, Elsevier, vol. 147(C).
    20. Anand, Paul & Blanchflower, Danny & Bovens, Luc & De Neve, Jan-Emmanuel & Graham, Carol & Nolan, Brian & Krekel, Christian & Thoma, Johanna, 2020. "Post-Covid 19 economic development and policy: submitted as recommendations to the Scottish economic recovery group," LSE Research Online Documents on Economics 105023, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.