IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3470-d772317.html
   My bibliography  Save this article

Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm

Author

Listed:
  • Rana Muhammad Adnan

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

  • Hong-Liang Dai

    (School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

  • Reham R. Mostafa

    (Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University, Mansoura 35516, Egypt)

  • Kulwinder Singh Parmar

    (Department of Mathematics, IKG Punjab Technical University, Jalandhar 144005, India)

  • Salim Heddam

    (Faculty of Science, Agronomy Department, Hydraulics Division University, 20 Août 1955, Route El Hadaik, BP 26, Skikda 21024, Algeria)

  • Ozgur Kisi

    (Department of Civil Engineering, University of Applied Sciences, 23562 Lübeck, Germany
    Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia)

Abstract

Dissolved oxygen (DO) concentration is an important water-quality parameter, and its estimation is very important for aquatic ecosystems, drinking water resources, and agro-industrial activities. In the presented study, a new support vector machine (SVM) method, which is improved by hybrid firefly algorithm–particle swarm optimization (FFAPSO), is proposed for the accurate estimation of the DO. Daily pH, temperature (T), electrical conductivity (EC), river discharge (Q) and DO data from Fountain Creek near Fountain, the United States, were used for the model development. Various combinations of pH, T, EC, and Q were used as inputs to the models to estimate the DO. The outcomes of the proposed SVM–FFAPSO model were compared with the SVM–PSO, SVM–FFA, and standalone SVM with respect to the root mean square errors (RMSE), the mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and determination coefficient (R 2 ), and graphical methods, such as scatterplots, and Taylor and violin charts. The SVM–FFAPSO showed a superior performance to the other methods in the estimation of the DO. The best model of each method was also assessed in multistep-ahead (from 1- to 7-day ahead) DO, and the superiority of the proposed method was observed from the comparison. The general outcomes recommend the use of SVM–FFAPSO in DO modeling, and this method can be useful for decision-makers in urban water planning and management.

Suggested Citation

  • Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3470-:d:772317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mosleh Hmoud Al-Adhaileh & Fawaz Waselallah Alsaade, 2021. "Modelling and Prediction of Water Quality by Using Artificial Intelligence," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    2. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    3. Fatemeh Barzegari Banadkooki & Vijay P. Singh & Mohammad Ehteram, 2021. "Multi-timescale drought prediction using new hybrid artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2461-2478, April.
    4. Sinan Q. Salih & Intisar Alakili & Ufuk Beyaztas & Shamsuddin Shahid & Zaher Mundher Yaseen, 2021. "Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8027-8046, May.
    5. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    7. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    8. Hai Tao & Ali Omran Al-Sulttani & Ameen Mohammed Salih Ameen & Zainab Hasan Ali & Nadhir Al-Ansari & Sinan Q. Salih & Reham R. Mostafa, 2020. "Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting," Complexity, Hindawi, vol. 2020, pages 1-22, October.
    9. Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    10. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    11. Yin, Liang & Fu, Lijiang & Wu, Hao & Xia, Qian & Jiang, Yongnian & Tan, Jinglu & Guo, Ya, 2021. "Modeling dissolved oxygen in a crab pond," Ecological Modelling, Elsevier, vol. 440(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Hu & Jiao Wang & Min Li & Abdelazim G. Hussien & Muhammad Abbas, 2023. "EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for Engineering Applications," Mathematics, MDPI, vol. 11(4), pages 1-32, February.
    2. Rendao Ye & Mengyao Yang & Peng Sun, 2023. "Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine," Sustainability, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Areerachakul, Sirilak & Sophatsathit, Peraphon & Lursinsap, Chidchanok, 2013. "Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals," Ecological Modelling, Elsevier, vol. 261, pages 1-7.
    2. Tat Pham Van & Pham Nu Ngoc Han & Minh Phap Dao, 2017. "Modelling of Dissolved Oxygen in Thi Vai River Water Incorporating Artificial Neural Network and Multivariable Regression," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 7(1), pages 11-18, November.
    3. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    5. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    6. Chenhong Zhu & J. G. Wang & Na Xu & Wei Liang & Bowen Hu & Peibo Li, 2022. "A Combination Approach of the Numerical Simulation and Data-Driven Analysis for the Impacts of Refracturing Layout and Time on Shale Gas Production," Sustainability, MDPI, vol. 14(23), pages 1-30, December.
    7. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    8. Yi-Jen Mon, 2022. "Vision Robot Path Control Based on Artificial Intelligence Image Classification and Sustainable Ultrasonic Signal Transformation Technology," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    9. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
    10. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    11. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    12. Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    13. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    14. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    15. Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
    16. Gebdang B. Ruben & Ke Zhang & Hongjun Bao & Xirong Ma, 2018. "Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 273-283, January.
    17. Luke Durell & J. Thad Scott & Douglas Nychka & Amanda S. Hering, 2023. "Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    18. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    19. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    20. Mohd Khairul Amri Kamarudin & Noorjima Abd Wahab & Hafizan Juahir & Nur Ili Hasmida Mustaffa & Muhammad Hafiz Md Saad & Siti Nor Aisyah Bati & Frankie Marcus Ata, 2022. "Impact Of Wastewater On Surface Water Quality In Kenyir Lake Basin, Hulu Terengganu," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 68-72, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3470-:d:772317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.