IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9898-d628151.html
   My bibliography  Save this article

Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks

Author

Listed:
  • Fen Yang

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Hossein Moayedi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Amir Mosavi

    (John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary)

Abstract

Predicting the level of dissolved oxygen (DO) is an important issue ensuring the sustainability of the inhabitants of a river. A prediction model can predict the DO level using a historical dataset with regard to water temperature, pH, and specific conductance for a given river. The model can be built using sophisticated computational procedures such as multi-layer perceptron-based artificial neural networks. Different types of networks can be constructed for this purpose. In this study, the authors constructed three networks, namely, multi-verse optimizer (MVO), black hole algorithm (BHA), and shuffled complex evolution (SCE). The networks were trained using the datasets collected from the Klamath River Station, Oregon, USA, for the period 2015–2018. We found that the trained networks could predict the DO level of 2019. We also found that both BHA- and SCE-based networks could predict the level of DO using a relatively simple configuration compared to that of MVO. From the viewpoints of absolute errors and Pearson’s correlation coefficient, MVO- and SCE-based networks performed better than BHA-based networks. In synopsis, the authors recommend MVO- and MLP-based artificial neural networks for predicting the DO level of a river.

Suggested Citation

  • Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9898-:d:628151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yashon O. Ouma & Clinton O. Okuku & Evalyne N. Njau, 2020. "Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya," Complexity, Hindawi, vol. 2020, pages 1-23, May.
    2. Han, Congying & Zhang, Baozhong & Chen, He & Wei, Zheng & Liu, Yu, 2019. "Spatially distributed crop model based on remote sensing," Agricultural Water Management, Elsevier, vol. 218(C), pages 165-173.
    3. Khaliq Majeed & Muhammad Abdul Qyyum & Alam Nawaz & Ashfaq Ahmad & Muhammad Naqvi & Tianbiao He & Moonyong Lee, 2020. "Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production," Energies, MDPI, vol. 13(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Muhammad Adnan Ikram & Imran Khan & Hossein Moayedi & Atefeh Ahmadi Dehrashid & Ismail Elkhrachy & Binh Nguyen Le, 2024. "Novel evolutionary-optimized neural network for predicting landslide susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17687-17719, July.
    2. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    3. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    4. Chenhong Zhu & J. G. Wang & Na Xu & Wei Liang & Bowen Hu & Peibo Li, 2022. "A Combination Approach of the Numerical Simulation and Data-Driven Analysis for the Impacts of Refracturing Layout and Time on Shale Gas Production," Sustainability, MDPI, vol. 14(23), pages 1-30, December.
    5. Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Osezua Aikhuele & Ayodele A. Periola & Elijah Aigbedion & Herold U. Nwosu, 2022. "Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 11(1), pages 1-20, January.
    2. Koketso J. Setshedi & Nhamo Mutingwende & Nosiphiwe P. Ngqwala, 2021. "The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa," IJERPH, MDPI, vol. 18(10), pages 1-17, May.
    3. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    4. Ali Rehman & Muhammad Abdul Qyyum & Ashfaq Ahmad & Saad Nawaz & Moonyong Lee & Li Wang, 2020. "Performance Enhancement of Nitrogen Dual Expander and Single Mixed Refrigerant LNG Processes Using Jaya Optimization Approach," Energies, MDPI, vol. 13(12), pages 1-27, June.
    5. Karunanayake, N. & Aimmanee, P. & Lohitvisate, W. & Makhanov, S.S., 2020. "Particle method for segmentation of breast tumors in ultrasound images," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 257-284.
    6. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
    7. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    8. Zhigui Guan & Yuanjun Zhao & Guojing Geng, 2022. "The Risk Early-Warning Model of Financial Operation in Family Farms Based on Back Propagation Neural Network Methods," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1221-1244, December.
    9. Milad Bagheri & Zelina Z. Ibrahim & Mohd Fadzil Akhir & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour & Wan Izatul Asma Wan Talaat, 2021. "Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia," Land, MDPI, vol. 10(12), pages 1-24, December.
    10. Ali Arefinia & Omid Bozorg-Haddad & Khaled Ahmadaali & Javad Bazrafshan & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Estimation of geographical variations in virtual water content and crop yield under climate change: comparison of three data mining approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8378-8396, June.
    11. Alireza Arabameri & Aman Arora & Subodh Chandra Pal & Satarupa Mitra & Asish Saha & Omid Asadi Nalivan & Somayeh Panahi & Hossein Moayedi, 2021. "K-Fold and State-of-the-Art Metaheuristic Machine Learning Approaches for Groundwater Potential Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1837-1869, April.
    12. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Xingmei Xu & Lu Wang & Xuewen Liang & Lei Zhou & Youjia Chen & Puyu Feng & Helong Yu & Yuntao Ma, 2023. "Maize Seedling Leave Counting Based on Semi-Supervised Learning and UAV RGB Images," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    15. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
    17. Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    18. Guo, Daxin & Olesen, Jørgen Eivind & Manevski, Kiril & Ma, Xiaoyi, 2021. "Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9898-:d:628151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.