IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i6p888-895.html
   My bibliography  Save this article

Artificial neural network modeling of the river water quality—A case study

Author

Listed:
  • Singh, Kunwar P.
  • Basant, Ankita
  • Malik, Amrita
  • Jain, Gunja

Abstract

The paper describes the training, validation and application of artificial neural network (ANN) models for computing the dissolved oxygen (DO) and biochemical oxygen demand (BOD) levels in the Gomti river (India). Two ANN models were identified, validated and tested for the computation of DO and BOD concentrations in the Gomti river water. Both the models employed eleven input water quality variables measured in river water over a period of 10 years each month at eight different sites. The performance of the ANN models was assessed through the coefficient of determination (R2) (square of the correlation coefficient), root mean square error (RMSE) and bias computed from the measured and model computed values of the dependent variables. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and model computed values of DO and BOD. The model computed values of DO and BOD by both the ANN models were in close agreement with their respective measured values in the river water. Relative importance and contribution of the input variables to the model output was evaluated through the partitioning approach. The identified ANN models can be used as tools for the computation of water quality parameters.

Suggested Citation

  • Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:888-895
    DOI: 10.1016/j.ecolmodel.2009.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009000283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo, Jan-Tai & Hsieh, Ming-Han & Lung, Wu-Seng & She, Nian, 2007. "Using artificial neural network for reservoir eutrophication prediction," Ecological Modelling, Elsevier, vol. 200(1), pages 171-177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterini Hadjisolomou & Konstantinos Stefanidis & George Papatheodorou & Evanthia Papastergiadou, 2016. "Assessing the Contribution of the Environmental Parameters to Eutrophication with the Use of the “PaD” and “PaD2” Methods in a Hypereutrophic Lake," IJERPH, MDPI, vol. 13(8), pages 1-14, July.
    2. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    3. Saif Said & Shadab Ali Khan, 2021. "Remote sensing-based water quality index estimation using data-driven approaches: a case study of the Kali River in Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18252-18277, December.
    4. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    5. Patricia Jimeno-Sáez & Javier Senent-Aparicio & José M. Cecilia & Julio Pérez-Sánchez, 2020. "Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
    6. Areerachakul, Sirilak & Sophatsathit, Peraphon & Lursinsap, Chidchanok, 2013. "Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals," Ecological Modelling, Elsevier, vol. 261, pages 1-7.
    7. J. Yazdi & A . Moridi, 2017. "Interactive Reservoir-Watershed Modeling Framework for Integrated Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2105-2125, May.
    8. Zhang, WenJun & Zhang, XiYan, 2008. "Neural network modeling of survival dynamics of holometabolous insects: A case study," Ecological Modelling, Elsevier, vol. 211(3), pages 433-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:888-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.