IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5335-d804607.html
   My bibliography  Save this article

Vision Robot Path Control Based on Artificial Intelligence Image Classification and Sustainable Ultrasonic Signal Transformation Technology

Author

Listed:
  • Yi-Jen Mon

    (Department of Electronic Engineering, Ming-Chuan University, Guei-Shan District, Taoyuan City 333, Taiwan)

Abstract

The unsupervised algorithm of artificial intelligence (AI), named ART (Adaptive Resonance Theory), is used to first roughly classify an image, that is, after the image is processed by the edge filtering technology, the image window is divided into 25 square areas of 5 rows and 5 columns, and then, according to the location of the edge of the image, it determines whether the robot should go straight (represented by S), turn around (represented by A), stop (T), turn left (represented by L), or turn right (represented by R). Then, after sustainable ultrasonic signal acquisition and transformation into digital signals are completed, the sustainable supervised neural network named SGAFNN (Supervised Gaussian adaptive fuzzy neural network) will perform an optimal path control that can accurately control the traveling speed and turning of the robot to avoid hitting walls or obstacles. Based on the above, this paper proposes the use of the ART operation after image processing to judge the rough direction, followed by the use of the ultrasonic signal to carry out the sustainable development of artificial intelligence and to carry out accurate speed and direction SGAFNN control to avoid obstacles. After simulation and practical evaluations, the proposed method is proved to be feasible and to exhibit good performance.

Suggested Citation

  • Yi-Jen Mon, 2022. "Vision Robot Path Control Based on Artificial Intelligence Image Classification and Sustainable Ultrasonic Signal Transformation Technology," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5335-:d:804607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mosleh Hmoud Al-Adhaileh & Fawaz Waselallah Alsaade, 2021. "Modelling and Prediction of Water Quality by Using Artificial Intelligence," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    2. Huanqing Wang & Qi Zhou & Xuebo Yang & Hamid Reza Karimi, 2014. "Robust Decentralized Adaptive Neural Control for a Class of Nonaffine Nonlinear Large-Scale Systems with Unknown Dead Zones," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, March.
    3. Jiří David & Pavel Brom & František Starý & Josef Bradáč & Vojtěch Dynybyl, 2021. "Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    4. Tat-Bao-Thien Nguyen & Teh-Lu Liao & Jun-Juh Yan, 2014. "Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, February.
    5. Hong-Ru Li & Zhi-Bin Jiang & Nan Kang, 2015. "Sliding Mode Disturbance Observer-Based Fractional Second-Order Nonsingular Terminal Sliding Mode Control for PMSM Position Regulation System," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, January.
    6. Muhammad Rashid & Muhammad Attique Khan & Majed Alhaisoni & Shui-Hua Wang & Syed Rameez Naqvi & Amjad Rehman & Tanzila Saba, 2020. "A Sustainable Deep Learning Framework for Object Recognition Using Multi-Layers Deep Features Fusion and Selection," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Vasebi & Yeganeh M. Hayeri, 2021. "Collective Driving to Mitigate Climate Change: Collective-Adaptive Cruise Control," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    2. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    3. Wahid Ali Hamood Altowayti & Shafinaz Shahir & Taiseer Abdalla Elfadil Eisa & Maged Nasser & Muhammad Imran Babar & Abdullah Faisal Alshalif & Faris Ali Hamood AL-Towayti, 2022. "Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    4. Messadi, M. & Mellit, A., 2017. "Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 51-58.
    5. André Felipe Henriques Librantz & Fábio Cosme Rodrigues dos Santos, 2023. "Intelligent Clustering Techniques for the Reduction of Chemicals in Water Treatment Plants," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    6. Yas Barzegar & Irina Gorelova & Francesco Bellini & Fabrizio D’Ascenzo, 2023. "Drinking Water Quality Assessment Using a Fuzzy Inference System Method: A Case Study of Rome (Italy)," IJERPH, MDPI, vol. 20(15), pages 1-20, August.
    7. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    8. Paola Ortiz-Grisales & Julián Patiño-Murillo & Eduardo Duque-Grisales, 2021. "Comparative Study of Computational Models for Reducing Air Pollution through the Generation of Negative Ions," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    9. Seoro Lee & Jonggun Kim & Gwanjae Lee & Jiyeong Hong & Joo Hyun Bae & Kyoung Jae Lim, 2021. "Prediction of Aquatic Ecosystem Health Indices through Machine Learning Models Using the WGAN-Based Data Augmentation Method," Sustainability, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5335-:d:804607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.