IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5877-d560782.html
   My bibliography  Save this article

Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm

Author

Listed:
  • Rana Muhammad Adnan

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Abolfazl Jaafari

    (Forest Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran 1496813111, Iran)

  • Aadhityaa Mohanavelu

    (Department of Civil Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore 641 112, India)

  • Ozgur Kisi

    (Civil Engineering Department, Ilia State University, 0162 Tbilisi, Georgia)

  • Ahmed Elbeltagi

    (Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt)

Abstract

The development of advanced computational models for improving the accuracy of streamflow forecasting could save time and cost for sustainable water resource management. In this study, a locally weighted learning (LWL) algorithm is combined with the Additive Regression (AR), Bagging (BG), Dagging (DG), Random Subspace (RS), and Rotation Forest (RF) ensemble techniques for the streamflow forecasting in the Jhelum Catchment, Pakistan. To build the models, we grouped the initial parameters into four different scenarios (M1–M4) of input data with a five-fold cross-validation (I–V) approach. To evaluate the accuracy of the developed ensemble models, previous lagged values of streamflow were used as inputs whereas the cross-validation technique and periodicity input were used to examine prediction accuracy on the basis of root correlation coefficient (R), root mean squared error (RMSE), mean absolute error (MAE), relative absolute error (RAE), and root relative squared error (RRSE). The results showed that the incorporation of periodicity (i.e., MN) as an additional input variable considerably improved both the training performance and predictive performance of the models. A comparison between the results obtained from the input combinations III and IV revealed a significant performance improvement. The cross-validation revealed that the dataset M3 provided more accurate results compared to the other datasets. While all the ensemble models successfully outperformed the standalone LWL model, the ensemble LWL-AR model was identified as the best model. Our study demonstrated that the ensemble modeling approach is a robust and promising alternative to the single forecasting of streamflow that should be further investigated with different datasets from other regions around the world.

Suggested Citation

  • Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5877-:d:560782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.
    2. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    3. Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
    4. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meysam Nouri & Parveen Sihag & Ozgur Kisi & Mohammad Hemmati & Shamsuddin Shahid & Rana Muhammad Adnan, 2022. "Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    2. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    3. Sahar Ahmadzadeh & Tahmina Ajmal & Ramakrishnan Ramanathan & Yanqing Duan, 2023. "A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    4. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    5. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    6. Elbeltagi, Ahmed & Azad, Nasrin & Arshad, Arfan & Mohammed, Safwan & Mokhtar, Ali & Pande, Chaitanya & Etedali, Hadi Ramezani & Bhat, Shakeel Ahmad & Islam, Abu Reza Md. Towfiqul & Deng, Jinsong, 2021. "Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    2. Qiang Hu & Yuelong Zhu & Hexuan Hu & Zhuang Guan & Zeyu Qian & Aiming Yang, 2022. "Multiple Kernel Learning with Maximum Inundation Extent from MODIS Imagery for Spatial Prediction of Flood Susceptibility," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 55-73, January.
    3. Abu Reza Md. Towfiqul Islam & Md. Mijanur Rahman Bappi & Saeed Alqadhi & Ahmed Ali Bindajam & Javed Mallick & Swapan Talukdar, 2023. "Improvement of flood susceptibility mapping by introducing hybrid ensemble learning algorithms and high-resolution satellite imageries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 1-37, October.
    4. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    5. Bikram Khanal & Pablo Rivas, 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning," Mathematics, MDPI, vol. 12(9), pages 1-17, May.
    6. Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
    7. Manish Kumar & Ahmed Elbeltagi & Chaitanya B. Pande & Ali Najah Ahmed & Ming Fai Chow & Quoc Bao Pham & Anuradha Kumari & Deepak Kumar, 2022. "Applications of Data-driven Models for Daily Discharge Estimation Based on Different Input Combinations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2201-2221, May.
    8. Syamsiyatul Muzayyanah & Cheng-Yih Hong & Rishan Adha & Su-Fen Yang, 2023. "The Non-Linear Relationship between Air Pollution, Labor Insurance and Productivity: Multivariate Adaptive Regression Splines Approach," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    9. Minh Pham Quang & Krti Tallam, 2022. "Predicting Flood Hazards in the Vietnam Central Region: An Artificial Neural Network Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    10. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    11. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    12. Taylor, Richard D., 2020. "Quantum Artificial Intelligence: A “precautionary” U.S. approach?," Telecommunications Policy, Elsevier, vol. 44(6).
    13. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    14. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    15. Vikash Shivhare & Alok Kumar & Reetesh Kumar & Satyanarayan Shashtri & Javed Mallick & Chander Kumar Singh, 2024. "Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11579-11610, October.
    16. Saad S. Alarifi & Mohamed Abdelkareem & Fathy Abdalla & Mislat Alotaibi, 2022. "Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    17. Victor Oliveira Santos & Felipe Pinto Marinho & Paulo Alexandre Costa Rocha & Jesse Van Griensven Thé & Bahram Gharabaghi, 2024. "Application of Quantum Neural Network for Solar Irradiance Forecasting: A Case Study Using the Folsom Dataset, California," Energies, MDPI, vol. 17(14), pages 1-26, July.
    18. Zitong Li & Tailong Xiao & Xiaoyang Deng & Guihua Zeng & Weimin Li, 2024. "Optimizing Variational Quantum Neural Networks Based on Collective Intelligence," Mathematics, MDPI, vol. 12(11), pages 1-14, May.
    19. Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
    20. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5877-:d:560782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.