IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00927-3.html
   My bibliography  Save this article

Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia

Author

Listed:
  • Sinan Q. Salih

    (Duy Tan University)

  • Intisar Alakili

    (University of Benghazi)

  • Ufuk Beyaztas

    (Bartin University)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia (UTM))

  • Zaher Mundher Yaseen

    (Ton Duc Thang University)

Abstract

In this research, three water quality (WQ) indexes, namely dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD), in Selangor River of peninsular Malaysia were simulated using a stochastic model based on vector auto-regression (VAR). The simulation was adopted based on three modeling scenarios of inputs as predictor: (i) related WQ parameters, (ii) WQ parameters and river flow data, and (iii) WQ parameters and rainfall data. The WQ parameters as input were determined based on the correlation analysis. The numerical analyses revealed that the prediction accuracy of VAR model substantially increases with the increase in input number. The model provided better accuracy in predictions of WQ indexes (root mean square error $$\approx$$ ≈ 0.11 and mean absolute error $$\approx$$ ≈ 0.26) when all environmental, hydrological, and climatological variables were considered. Further improvement in model performance (root mean square error $$\approx$$ ≈ 0.0248 and mean absolute error $$\approx$$ ≈ 0.1259) can be achieved if physiochemical parameters like suspended solid material and the turbidity are used as additional inputs.

Suggested Citation

  • Sinan Q. Salih & Intisar Alakili & Ufuk Beyaztas & Shamsuddin Shahid & Zaher Mundher Yaseen, 2021. "Prediction of dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand using hydrometeorological variables: case study of Selangor River, Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8027-8046, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00927-3
    DOI: 10.1007/s10668-020-00927-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00927-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00927-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    2. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    3. Michael R.M. Abrigo & Inessa Love, 2016. "Estimation of Panel Vector Autoregression in Stata: a Package of Programs," Working Papers 201602, University of Hawaii at Manoa, Department of Economics.
    4. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    5. Lütkepohl, Helmut & Poskitt, D.S., 1991. "Estimating Orthogonal Impulse Responses via Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 7(4), pages 487-496, December.
    6. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    7. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    8. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    9. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    10. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    11. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    12. Michael R. M. Abrigo & Inessa Love, 2016. "Estimation of panel vector autoregression in Stata," Stata Journal, StataCorp LP, vol. 16(3), pages 778-804, September.
    13. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    2. Mohd Khairul Amri Kamarudin & Noorjima Abd Wahab & Hafizan Juahir & Nur Ili Hasmida Mustaffa & Muhammad Hafiz Md Saad & Siti Nor Aisyah Bati & Frankie Marcus Ata, 2022. "Impact Of Wastewater On Surface Water Quality In Kenyir Lake Basin, Hulu Terengganu," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 68-72, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    2. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    4. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    5. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    6. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    7. Jing Li, 2021. "Block bootstrap prediction intervals for parsimonious first‐order vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 512-527, April.
    8. Jing, Li, 2009. "Bootstrap prediction intervals for threshold autoregressive models," MPRA Paper 13086, University Library of Munich, Germany.
    9. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
    10. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    11. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
    12. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
    13. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
    14. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    15. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    16. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    17. Hou, Xiaohui & Li, Shuo & Li, Wanli & Wang, Qing, 2018. "Bank diversification and liquidity creation: Panel Granger-causality evidence from China," Economic Modelling, Elsevier, vol. 71(C), pages 87-98.
    18. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    19. Na Zhang & Jinqian Deng & Fayyaz Ahmad & Muhammad Umar Draz & Nabila Abid, 2023. "The dynamic association between public environmental demands, government environmental governance, and green technology innovation in China: evidence from panel VAR model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9851-9875, September.
    20. Md. Mizanur Rahman & Tahsin Binta Anis, 2023. "Government expenditure on education and economic growth: a panel data analysis," Journal of Community Positive Practices, Catalactica NGO, issue 2, pages 30-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00927-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.