IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14919-d970103.html
   My bibliography  Save this article

Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality

Author

Listed:
  • Yutong Wu

    (Faculty of International Tourism and Management, City University of Macau, Macau 999078, China)

  • Bin Xin

    (Niutech Environment Technology Corporation, Jinan 250022, China)

  • Hongyu Zhu

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Zifei Ye

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

Abstract

With the advent of the post-epidemic era, the energy consumption characteristics of hotels have changed, which has an important impact on urban energy conservation. In order to contribute to the goal of carbon neutrality, this study discusses the energy-saving operation strategy of hotels considering the impact of the COVID-19 epidemic. Based on the energy consumption characteristics of large public buildings, this paper analyzes the energy consumption distribution and operation characteristics of hotel buildings in detail. By collecting energy consumption data from five typical large hotel buildings in a tourist city in southern China from 2018 to 2022, the impact of COVID-19 on hotel energy consumption and hotel business characteristics was discussed in detail. Combined with the economic development characteristic in the post-epidemic era, this paper explores the energy-saving strategies that hotels can adopt in the context of normalized epidemic prevention and control and obtains the optimal path of low-carbon economic operation of hotel buildings. This study reveals the energy consumption characteristics and energy-saving potential of hotel buildings, and provides enlightenment for hotel management and low-carbon development in the post-epidemic era.

Suggested Citation

  • Yutong Wu & Bin Xin & Hongyu Zhu & Zifei Ye, 2022. "Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14919-:d:970103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jen Chun & Huang, Kuo-Tsang, 2013. "Energy consumption characteristics of hotel's marketing preference for guests from regions perspective," Energy, Elsevier, vol. 52(C), pages 173-184.
    2. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Dhirasasna, NiNa & Sahin, Oz, 2021. "A system dynamics model for renewable energy technology adoption of the hotel sector," Renewable Energy, Elsevier, vol. 163(C), pages 1994-2007.
    4. Qin, Xiang & Wang, Dingbiao & Jin, Zunlong & Wang, Junlei & Zhang, Guojie & Li, Hang, 2021. "A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system," Renewable Energy, Elsevier, vol. 178(C), pages 574-586.
    5. Peng Tong & Chao Zhao & Huaqing Wang, 2019. "Research on the Survival and Sustainable Development of Small and Medium-Sized Enterprises in China under the Background of Low-Carbon Economy," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    6. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    7. Hussain, Syed Asad & Huang, Gongsheng & Yuen, Richard Kwok Kit & Wang, Wei, 2020. "Adaptive regression model-based real-time optimal control of central air-conditioning systems," Applied Energy, Elsevier, vol. 276(C).
    8. Xu, Pengpeng & Chan, Edwin Hon-Wan & Qian, Queena Kun, 2011. "Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China," Energy Policy, Elsevier, vol. 39(11), pages 7389-7398.
    9. Wen, Shibin & Liu, Hongman, 2022. "Research on energy conservation and carbon emission reduction effects and mechanism: Quasi-experimental evidence from China," Energy Policy, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Dong & Guo, Ju’e, 2014. "Research on the energy-saving and revenue sharing strategy of ESCOs under the uncertainty of the value of Energy Performance Contracting Projects," Energy Policy, Elsevier, vol. 73(C), pages 710-721.
    2. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    3. Wunhong Su & Liuzhen Zhang & Chao Ge & Shuai Chen, 2022. "Association between Internal Control and Sustainability: A Literature Review Based on the SOX Act Framework," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    4. Tsai, Kang-Ting & Lin, Tzu-Ping & Hwang, Ruey-Lung & Huang, Yu-Jing, 2014. "Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan," Tourism Management, Elsevier, vol. 42(C), pages 13-21.
    5. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    6. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    7. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    8. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    9. Chengtao Deng & Zixin Guo & Xiaoyue Huang & Tao Shen, 2023. "The Dynamic Nexus of Fossil Energy Consumption, Temperature and Carbon Emissions: Evidence from Simultaneous Equation Model," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    10. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.
    11. Qin, Xiang & Shen, Aoqi & Duan, Hongxin & Wang, Guanghui & Chen, Jiaheng & Tang, Songzhen & Wang, Dingbiao, 2024. "Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method," Renewable Energy, Elsevier, vol. 222(C).
    12. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    13. Cai, Dong & Zhang, Guoxing & Lai, Kee-hung & Guo, Chunxiang & Su, Bin, 2024. "Government incentive contract design for carbon reduction innovation considering market value under asymmetric information," Energy Policy, Elsevier, vol. 186(C).
    14. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    15. Ershen Zhang & Zhipeng Wang & Guojun Chen & Guoen Wang & Yajuan Zhou & Pengliang Hu & Haijuan Zhao, 2023. "Spatial-Temporal Evolution Patterns and Influencing Factors of Hotels in Yellow River Basin from 2012 to 2022," Land, MDPI, vol. 12(4), pages 1-27, March.
    16. Ting Wang & Emmanuel Kingsford Owusu & Qinghua He & Zidan Tian & Dong Wu, 2022. "Empirical Assessments of the Determinants of Construction Megaprojects’ Success: Evidence from China," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    17. Shang, Tiancheng & Zhang, Kai & Liu, Peihong & Chen, Ziwei & Li, Xiangpeng & Wu, Xue, 2015. "What to allocate and how to allocate?—Benefit allocation in Shared Savings Energy Performance Contracting Projects," Energy, Elsevier, vol. 91(C), pages 60-71.
    18. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    19. Tseng, Ming-Lang & Ardaniah, Viqi & Sujanto, Raditia Yudistira & Fujii, Minoru & Lim, Ming K., 2021. "Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    20. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14919-:d:970103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.