IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306401.html
   My bibliography  Save this article

Design and optimization of a novel electrowetting-driven solar-indoor lighting system

Author

Listed:
  • Chen, Qian
  • Oh, Seung Jin
  • Burhan, Muhammad

Abstract

Considering the high level of energy consumption for lighting in commercial buildings, the use of solar energy for daylighting is appealing more interests at both research and industrial levels. This study presents a novel daylighting system working on the principles of electrowetting. It integrates electrowetting-driven liquid prisms with existing optical fiber daylighting systems, which not only facilitates flexible regulation of the lighting power but also allows for recovery of excess sunlight that is not used for daylighting. An improved design is firstly proposed for the liquid prism to simplify the fabrication processes, increase its reliability, and facilitate easier maintenance. Liquid prisms are then fabricated using the proposed design, and different functionalities are demonstrated. Based on the optimized component design, the illumination performance and energy-saving potential of the proposed daylighting system is quantified using long-term climatological data. Under the climatic conditions of Singapore, a stand-alone system with 1 m2 solar collector is able to provide an annual illumination time of more than 2260 h for a 10 m2 office. The energy consumption for driving the prism is found to be negligible compared with the illumination power provided. Additionally, recovery of the excess energy would further improve the illumination time by up to 95%, while the energy cost is reduced by 20%.

Suggested Citation

  • Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306401
    DOI: 10.1016/j.apenergy.2020.115128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    2. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    3. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    4. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.
    5. Narasimhan, Vinayak & Jiang, Dongyue & Park, Sung-Yong, 2016. "Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection," Applied Energy, Elsevier, vol. 162(C), pages 450-459.
    6. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    7. Wong, Irene & Choi, H.L. & Yang, H., 2012. "Simulation and experimental studies on natural lighting in enclosed lift lobbies of highrise residential buildings by remote source solar lighting," Applied Energy, Elsevier, vol. 92(C), pages 705-713.
    8. Burhan, Muhammad & Chua, Kian Jon Ernest & Ng, Kim Choon, 2016. "Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm," Energy, Elsevier, vol. 99(C), pages 115-128.
    9. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    10. De Rossi, Francesca & Pontecorvo, Tadeo & Brown, Thomas M., 2015. "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, Elsevier, vol. 156(C), pages 413-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    2. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    3. Yeh, Shih-Chuan, 2019. "High performance natural lighting system combined with SPSC," Renewable Energy, Elsevier, vol. 143(C), pages 226-232.
    4. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    5. Alejandra Susa-Páez & María Beatriz Piderit-Moreno, 2020. "Geometric Optimization of Atriums with Natural Lighting Potential for Detached High-Rise Buildings," Sustainability, MDPI, vol. 12(16), pages 1-40, August.
    6. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    7. Xie, Jing Chao & Xue, Peng & Mak, Cheuk Ming & Liu, Jia Ping, 2017. "Balancing energy and daylighting performances for envelope design: A new index and proposition of a case study in Hong Kong," Applied Energy, Elsevier, vol. 205(C), pages 13-22.
    8. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    9. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    10. Acosta, Ignacio & Varela, Carmen & Molina, Juan Francisco & Navarro, Jaime & Sendra, Juan José, 2018. "Energy efficiency and lighting design in courtyards and atriums: A predictive method for daylight factors," Applied Energy, Elsevier, vol. 211(C), pages 1216-1228.
    11. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    12. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    14. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    15. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    16. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    17. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    18. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    19. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    20. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.