IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000016.html
   My bibliography  Save this article

Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method

Author

Listed:
  • Qin, Xiang
  • Shen, Aoqi
  • Duan, Hongxin
  • Wang, Guanghui
  • Chen, Jiaheng
  • Tang, Songzhen
  • Wang, Dingbiao

Abstract

This work proposes a novel method for verifying the accuracy of the numerical simulation model of the compression/ejector transcritical CO2 heat pump system using convolutional neural networks. The method focuses on converting the original unequal input conditions into equal input conditions and comparing the simulation results with the experimental prediction results of each component. The validation results reveal the following findings: 1) The root mean square errors of the gas cooler and the water source evaporator are 9.16 °C and 11.47 °C respectively, indicating that future work should focus on correcting of the CO2 heat transfer coefficient calculation method; 2) The verification results of the evaporator indicate that suggesting the need to incorporate an air dynamic change module in the air source input; 3) The root mean square error of the CO2 outlet pressure in the ejector is 462.45 kPa. It can be inferred from the pressure variation trend that the limit pressure ratio of the compressor is the main factor affecting the accuracy of the ejector model. Overall, this article presents a novel and effective method for verifying the accuracy of numerical models.

Suggested Citation

  • Qin, Xiang & Shen, Aoqi & Duan, Hongxin & Wang, Guanghui & Chen, Jiaheng & Tang, Songzhen & Wang, Dingbiao, 2024. "Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000016
    DOI: 10.1016/j.renene.2024.119936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Xiang & Wang, Dingbiao & Jin, Zunlong & Wang, Junlei & Zhang, Guojie & Li, Hang, 2021. "A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system," Renewable Energy, Elsevier, vol. 178(C), pages 574-586.
    2. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    2. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    3. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
    4. Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
    5. Yutong Wu & Bin Xin & Hongyu Zhu & Zifei Ye, 2022. "Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    6. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    7. Ivan Ignatkin & Sergey Kazantsev & Nikolay Shevkun & Dmitry Skorokhodov & Nikita Serov & Aleksei Alipichev & Vladimir Panchenko, 2023. "Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    8. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
    9. Hou, Yaxiang & Wu, Weidong & Li, Zhenbo & Yu, Xinyi & Zeng, Tao, 2023. "Effect of drying air supply temperature and internal heat exchanger on performance of a novel closed-loop transcritical CO2 air source heat pump drying system," Renewable Energy, Elsevier, vol. 219(P2).
    10. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    11. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    12. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Li, Shujuan, 2024. "Evaluation of dynamic behaviors in varied swirling flows for high-pressure offshore natural gas supersonic dehydration," Energy, Elsevier, vol. 300(C).
    13. Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).
    14. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    15. Wang, Haidan & Song, Yulong & Qiao, Yiyou & Li, Shengbo & Cao, Feng, 2022. "Rational assessment and selection of air source heat pump system operating with CO2 and R407C for electric bus," Renewable Energy, Elsevier, vol. 182(C), pages 86-101.
    16. Zhao, Pan & Xu, Wenpan & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng & Yan, Zhequan, 2022. "Performance evaluation of a renewable driven standalone combined power and water supply system with cascade electricity and heat storage," Renewable Energy, Elsevier, vol. 199(C), pages 1283-1299.
    17. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
    18. Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).
    19. Zhihua Wang & Yujia Zhang & Fenghao Wang & Guichen Li & Kaiwen Xu, 2021. "Performance Optimization and Economic Evaluation of CO 2 Heat Pump Heating System Coupled with Thermal Energy Storage," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    20. Aleksei Khimenko & Dmitry Tikhomirov & Stanislav Trunov & Aleksey Kuzmichev & Vadim Bolshev & Olga Shepovalova, 2022. "Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms," Agriculture, MDPI, vol. 12(11), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.