IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309399.html
   My bibliography  Save this article

Adaptive regression model-based real-time optimal control of central air-conditioning systems

Author

Listed:
  • Hussain, Syed Asad
  • Huang, Gongsheng
  • Yuen, Richard Kwok Kit
  • Wang, Wei

Abstract

Model-based, real-time optimal control is an effective tool to improve the energy efficiency of central air-conditioning systems. However, its performance relies heavily on the accuracy of the system models, whereas the development of accurate models for central air-conditioning systems is not easy due to their complex dynamics and non-linearities. This study presents an adaptive regression model-based real-time optimal control strategy for central air-conditioning systems. In the proposed strategy, regression models are adopted to describe the relationship between the power consumption of the system and the variables that are optimised. Their simple structures enable a low computation load for model updating and real-time optimisation. The length of the training data (for model updating) is investigated, and a suitable length is found using a similarity check-based method. Case studies were carried out to assess the performance of the proposed strategy, and they demonstrated that (1) a week was the optimal length of the training data for the case system, (2) the proposed strategy saved energy use by 3.48–10.59% when compared with a benchmark system with no optimisation, and (3) the proposed method reduced the computational load by 85% when compared with a simplified physical model-based optimal control without adaptive modelling.

Suggested Citation

  • Hussain, Syed Asad & Huang, Gongsheng & Yuen, Richard Kwok Kit & Wang, Wei, 2020. "Adaptive regression model-based real-time optimal control of central air-conditioning systems," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309399
    DOI: 10.1016/j.apenergy.2020.115427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asad, Hussain Syed & Yuen, Richard Kwok Kit & Huang, Gongsheng, 2017. "Multiplexed real-time optimization of HVAC systems with enhanced control stability," Applied Energy, Elsevier, vol. 187(C), pages 640-651.
    2. Bianchini, Gianni & Casini, Marco & Pepe, Daniele & Vicino, Antonio & Zanvettor, Giovanni Gino, 2019. "An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings," Applied Energy, Elsevier, vol. 240(C), pages 327-340.
    3. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    4. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    5. Blum, D.H. & Arendt, K. & Rivalin, L. & Piette, M.A. & Wetter, M. & Veje, C.T., 2019. "Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems," Applied Energy, Elsevier, vol. 236(C), pages 410-425.
    6. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    7. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    8. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    9. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Lizhi & Liu, Junjie & Chong, Adrian & Dai, Xilei, 2022. "Deep learning and physics-based modeling for the optimization of ice-based thermal energy systems in cooling plants," Applied Energy, Elsevier, vol. 322(C).
    2. Chen, Kang & Zhu, Xu & Anduv, Burkay & Jin, Xinqiao & Du, Zhimin, 2022. "Digital twins model and its updating method for heating, ventilation and air conditioning system using broad learning system algorithm," Energy, Elsevier, vol. 251(C).
    3. Yutong Wu & Bin Xin & Hongyu Zhu & Zifei Ye, 2022. "Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad, Hussain Syed & Yuen, Richard Kwok Kit & Huang, Gongsheng, 2017. "Multiplexed real-time optimization of HVAC systems with enhanced control stability," Applied Energy, Elsevier, vol. 187(C), pages 640-651.
    2. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    4. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    5. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    6. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    8. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    9. Yang Yuan & Neng Zhu & Haizhu Zhou & Hai Wang, 2021. "A New Model Predictive Control Method for Eliminating Hydraulic Oscillation and Dynamic Hydraulic Imbalance in a Complex Chilled Water System," Energies, MDPI, vol. 14(12), pages 1-23, June.
    10. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    11. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    12. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    13. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    14. Mu, Baojie & Li, Yaoyu & House, John M. & Salsbury, Timothy I., 2017. "Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control," Applied Energy, Elsevier, vol. 208(C), pages 766-781.
    15. Ma, Keyan & Liu, Mingsheng & Zhang, Jili, 2021. "Online optimization method of cooling water system based on the heat transfer model for cooling tower," Energy, Elsevier, vol. 231(C).
    16. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    17. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    18. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    19. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Nadia Nedjah & Luiza de Macedo Mourelle & Marcelo Silveira Dantas Lizarazu, 2022. "Swarm Intelligence-Based Multi-Objective Optimization Applied to Industrial Cooling Towers for Energy Efficiency," Sustainability, MDPI, vol. 14(19), pages 1-43, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.