IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13667-d949734.html
   My bibliography  Save this article

Comparison of the Performance of Hybrid Traffic Signal Patterns and Conventional Alternatives When Accounting for Both Pedestrians and Vehicles

Author

Listed:
  • Farzaneh Montazeri

    (CIRRELT, GERAD and École de Technologie SupéRieure, 1100, Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada)

  • Fausto Errico

    (CIRRELT, GERAD and École de Technologie SupéRieure, 1100, Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada)

  • Luc Pellecuer

    (School of Engineering, Faculty of Environment & Technology, University of the West of England (UWE Bristol), Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK)

Abstract

Traffic control systems are crucial for managing traffic flows. Their main function is to reduce interactions among users for safety reasons, while minimizing the travel times. Researchers often concentrate on the cycle length, whose impact on travel times is directly measurable. However, the choice of the signal pattern may also have a great potential to reduce travel times and unsafe situations. This potential is yet to be thoroughly investigated. In this work, we are interested in comparing different signal patterns in terms of the number of potential conflicts and delay time for both drivers and pedestrians. To this end, we first select three commonly adopted signal patterns, namely the Exclusive Pedestrian Phase (EPP), the Leading Through Interval (LTI) and the Two-Way Crossing (TWC). We then generalize existing methods for measuring user delay and safety for these three signal patterns. Moreover, we investigate a hypothetical hybrid pattern obtained by dynamically adapting the signal pattern to real-time data. The proposed methodology is applied to a case study considering an isolated intersection in Montreal, Canada. We perform computational experiments geared towards determining the best pattern according to ad hoc performance indicators and user flows. Results show that the EPP and LTI patterns generally perform better than TWC. EPP generally outperforms LTI when measuring the number of potential conflicts, while LTI outperforms EPP when considering delay times. Furthermore, the hypothetical hybrid pattern shows a positive but overall limited impact regarding both delay times and number of potential conflicts.

Suggested Citation

  • Farzaneh Montazeri & Fausto Errico & Luc Pellecuer, 2022. "Comparison of the Performance of Hybrid Traffic Signal Patterns and Conventional Alternatives When Accounting for Both Pedestrians and Vehicles," Sustainability, MDPI, vol. 14(20), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13667-:d:949734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishaque, Muhammad Moazzam & Noland, Robert B., 2007. "Trade-offs between vehicular and pedestrian traffic using micro-simulation methods," Transport Policy, Elsevier, vol. 14(2), pages 124-138, March.
    2. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    3. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    4. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    5. Xiaomeng Li & Xuedong Yan & Xingang Li & Jiangfeng Wang, 2012. "Using Cellular Automata to Investigate Pedestrian Conflicts with Vehicles in Crosswalk at Signalized Intersection," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiang & Sun, Jian-Qiao, 2019. "Intersection multi-objective optimization on signal setting and lane assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1233-1246.
    2. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    3. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    4. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    5. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    6. C. K. Wong & Yi Liu, 2017. "Lane-Based Optimization for Macroscopic Network Configuration Designs," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-18, July.
    7. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    8. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    9. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    10. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    11. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    12. Fei Zhao & Liping Fu & Xiaofeng Pan & Tae J. Kwon & Ming Zhong, 2022. "Investigating the Effect of Network Traffic Signal Timing Strategy with Dynamic Variable Guidance Lanes," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    13. Dujardin, Yann & Vanderpooten, Daniel & Boillot, Florence, 2015. "A multi-objective interactive system for adaptive traffic control," European Journal of Operational Research, Elsevier, vol. 244(2), pages 601-610.
    14. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    15. Nam Seok Kim & Seung Sub Yoon & Donghyung Yook, 2017. "Performance comparison between pedestrian push-button and pre-timed pedestrian crossings at midblock: a Korean case study," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 706-721, August.
    16. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    17. Jianrong Cai & Zhixue Li & Yinghong Xiao & Zhaoming Zhou & Qiong Long & Jie Yu & Jinfan Zhang & Lei Zhang, 2023. "Reversible Lane Optimization of the Urban Road Network Considering Adjustment Time Constraints," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    18. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 335-347.
    19. Bo Feng & Mingming Zheng & Yan Liu, 2023. "Optimization of Signal Timing for the Contraflow Left-Turn Lane at Signalized Intersections Based on Delay Analysis," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    20. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13667-:d:949734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.