IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12449-d929800.html
   My bibliography  Save this article

Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements

Author

Listed:
  • Yunpeng Zhao

    (Department of Civil and Environmental Engineering, University of Maryland College Park, College Park, MD 20742, USA)

  • Dimitrios Goulias

    (Department of Civil and Environmental Engineering, University of Maryland College Park, College Park, MD 20742, USA)

  • Magdalena Dobiszewska

    (Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796 Bydgoszcz, Poland)

  • Paweł Modrzyński

    (Faculty of Management, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796 Bydgoszcz, Poland)

Abstract

The use of recycled materials and industrial by-products in pavement construction and rehabilitation can achieve substantial benefits in saving nature resources and reducing energy consumption as well as greenhouse gas (GHG) emissions. Alternative geological origin rock dust for the partial replacement of fine aggregate and/or cement in Portland cement concrete (PCC) pavements may provide positive environmental and economic benefits. The objective of this study was to quantitatively assess the life-cycle economic and environmental impacts when rock dust is used in PCC pavement roadway construction. Previous studies have primarily focused on the economics and/or environmental impacts during the material production process. Thus, a methodological framework considering all stages (such as material production, transportation, construction, maintenance, rehabilitation and end of life), involved in the life-cycle assessment of concrete pavements is proposed when using recycled materials/by-products. The life-cycle assessment (LCA) was conducted on a pavement project representative of typical construction practices in Poland to quantify such benefits. The alternative sustainable construction strategies considered partially replacing fine aggregate and/or cement with rock dust of basalt origin in PCC pavements. The LCA results indicate that using rock dust to replace 20% FA and 10% cement provided a reduction of 6.5% in cost, 10% in CO 2 emissions and 11% in energy consumption. This study also provides significant insights on the specific contribution of material production, construction processes and the transportation of materials to the overall environmental benefits and cost savings. The suggested approach for LCA analysis in pavement construction can be adopted elsewhere for quantifying the sustainability benefits of using alternative recycled materials in roadways.

Suggested Citation

  • Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12449-:d:929800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    2. Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    3. Anastasiou, E.K. & Liapis, A. & Papayianni, I., 2015. "Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 1-8.
    4. Chiu, Chui-Te & Hsu, Tseng-Hsing & Yang, Wan-Fa, 2008. "Life cycle assessment on using recycled materials for rehabilitating asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 545-556.
    5. Huang, Yue & Bird, Roger N. & Heidrich, Oliver, 2007. "A review of the use of recycled solid waste materials in asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    2. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    3. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    4. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    5. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    7. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    8. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    9. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    10. Primož Jelušič & Süleyman Gücek & Bojan Žlender & Cahit Gürer & Rok Varga & Tamara Bračko & Murat V. Taciroğlu & Burak E. Korkmaz & Şule Yarcı & Borut Macuh, 2023. "Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    11. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    12. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    13. Su, Kai & Hachiya, Yoshitaka & Maekawa, Ryota, 2009. "Study on recycled asphalt concrete for use in surface course in airport pavement," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 37-44.
    14. Davor Kvočka & Jakob Šušteršič & Alenka Mauko Pranjić & Ana Mladenović, 2022. "Mass Concrete with EAF Steel Slag Aggregate: Workability, Strength, Temperature Rise, and Environmental Performance," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    15. Sher Jahan Khan & Saeed Badghish & Puneet Kaur & Rajat Sharma & Amandeep Dhir, 2023. "What motivates the purchasing of green apparel products? A systematic review and future research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4183-4201, November.
    16. Feng Ma & Aimin Sha & Ruiyu Lin & Yue Huang & Chao Wang, 2016. "Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China," IJERPH, MDPI, vol. 13(3), pages 1-15, March.
    17. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    18. Lin, Chitsan & Huang, Chun-Lan & Shern, Chien-Chuan, 2008. "Recycling waste tire powder for the recovery of oil spills," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1162-1166.
    19. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    20. Skaf, Marta & Manso, Juan M. & Aragón, Ángel & Fuente-Alonso, José A. & Ortega-López, Vanesa, 2017. "EAF slag in asphalt mixes: A brief review of its possible re-use," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 176-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12449-:d:929800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.