IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p8071-d597446.html
   My bibliography  Save this article

Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics

Author

Listed:
  • Yunpeng Zhao

    (Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA)

  • Dimitrios Goulias

    (Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA)

  • Dominique Peterson

    (Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA)

Abstract

Transportation infrastructure is one of the largest consumers of natural materials. To improve the environmental quality and sustainable development of transportation infrastructure, it is important to implement sustainable strategies in pavement construction and rehabilitation. The use of recycled materials is a key element in generating sustainable pavement designs to save natural resources, reduce energy, greenhouse gas emissions, and costs. The objective of this study was to propose a methodology for assessing the environmental and economic life-cycle benefits when using recycled asphalt pavement (RAP) materials in highway projects. Previous studies on life cycle analysis (LCA) using RAP focused on the economics and/or environmental impacts during the material production process. Thus, there is a need to consider sustainability analysis at all stages of construction and rehabilitation during the performance period of pavement structures. This study addresses this need with the proposed methodology. The suggested approach could be potentially implemented in a pavement management system (PMS) so as to introduce sustainability principles in optimizing alternative rehabilitation strategies. The methodology includes various steps for the analysis, starting with condition assessment of the existing highway, identifying alternative structural pavement designs, predicting service life, setting up alternative rehabilitation strategies, and conducting life cycle environmental and economic analysis. To demonstrate the value of the methodology, a comparative parametric study was conducted on two real case study projects representing actual field conditions for primary roads in Maryland. These case studies were used in order to quantify the economic savings and environmental benefits of using different levels of RAP in highway rehabilitation. The results of the analysis indicate that incorporating RAP in pavement rehabilitation can contribute substantially to cost savings and environmental impact reduction (e.g., greenhouse gas emission, energy, water, and hazardous waste). The benefits illustrated in this study are expected to encourage wide adoption of the proposed methodology and the use of recycled materials in highway construction and rehabilitation. The methodology is transferable where similar materials and highway construction techniques are used.

Suggested Citation

  • Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8071-:d:597446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/8071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/8071/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    2. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    4. Aner Martinez-Soto & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody & Constanza Avendaño-Vera & Camila Martínez-Toledo, 2022. "Comparison of Environmental Loads of Fibers Used in the Manufacture of Hot Mix Asphalt (HMA) and Stone Mastic Asphalt (SMA) Mixes Using a Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    5. Christina Plati & Brad Cliatt, 2021. "Building Sustainable Pavements: Investigating the Effectiveness of Recycled Tire Rubber as a Modifier in Asphalt Mixtures," Energies, MDPI, vol. 14(21), pages 1-16, October.
    6. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    7. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    8. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    9. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    10. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    11. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8071-:d:597446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.