IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v120y2017icp176-185.html
   My bibliography  Save this article

EAF slag in asphalt mixes: A brief review of its possible re-use

Author

Listed:
  • Skaf, Marta
  • Manso, Juan M.
  • Aragón, Ángel
  • Fuente-Alonso, José A.
  • Ortega-López, Vanesa

Abstract

Electric arc furnace (EAF) slag has excellent mechanical properties that justify its use as aggregate in the manufacture of bituminous mixes. Its main properties, the problems with its application, and the important features of the mixtures made with this slag (mechanical behavior, resistance to fatigue and permanent deformation, moisture susceptibility, skid resistance, permeability, noise absorption, etc.) are all analyzed in this review. It is concluded that the use of EAF slag is mainly recommended in partial replacement of the coarse aggregate, in all types of bituminous mixtures, following appropriate pre-treatment. This use of the EAF slag improves the mechanical performance and durability of the mixes, as well as their long-term sustainability.

Suggested Citation

  • Skaf, Marta & Manso, Juan M. & Aragón, Ángel & Fuente-Alonso, José A. & Ortega-López, Vanesa, 2017. "EAF slag in asphalt mixes: A brief review of its possible re-use," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 176-185.
  • Handle: RePEc:eee:recore:v:120:y:2017:i:c:p:176-185
    DOI: 10.1016/j.resconrec.2016.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916303767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yue & Bird, Roger N. & Heidrich, Oliver, 2007. "A review of the use of recycled solid waste materials in asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primož Jelušič & Süleyman Gücek & Bojan Žlender & Cahit Gürer & Rok Varga & Tamara Bračko & Murat V. Taciroğlu & Burak E. Korkmaz & Şule Yarcı & Borut Macuh, 2023. "Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    2. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    3. Sher Jahan Khan & Saeed Badghish & Puneet Kaur & Rajat Sharma & Amandeep Dhir, 2023. "What motivates the purchasing of green apparel products? A systematic review and future research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4183-4201, November.
    4. Feng Ma & Aimin Sha & Ruiyu Lin & Yue Huang & Chao Wang, 2016. "Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China," IJERPH, MDPI, vol. 13(3), pages 1-15, March.
    5. Lin, Chitsan & Huang, Chun-Lan & Shern, Chien-Chuan, 2008. "Recycling waste tire powder for the recovery of oil spills," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1162-1166.
    6. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    7. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    8. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    9. Casey, Donnchadh & McNally, Ciaran & Gibney, Amanda & Gilchrist, Michael D., 2008. "Development of a recycled polymer modified binder for use in stone mastic asphalt," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1167-1174.
    10. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Marco Pasetto & Andrea Baliello & Giovanni Giacomello & Emiliano Pasquini, 2023. "The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review," Sustainability, MDPI, vol. 15(11), pages 1-32, May.
    12. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    13. Luorui Zheng & Yingzhen Li & Cheng Qian & Yanjun Du, 2023. "Carbon Emission Evaluation of Roadway Construction at Contaminated Sites Based on Life Cycle Assessment Method," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    14. Cansu İskender & Erol İskender & Atakan Aksoy & Celaleddin Ensar Şengül, 2021. "Effect of Glass Cullet Size and Hydrated Lime—Nanoclay Additives on the Mechanical Properties of Glassphalt Concrete," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    15. Güngör KARAKAŞ, 2022. "Factors affecting food waste awareness in Turkey. The case of Corum province," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 271-289, June.
    16. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    17. Feng Ma & Aimin Sha & Panpan Yang & Yue Huang, 2016. "The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China," IJERPH, MDPI, vol. 13(7), pages 1-12, June.
    18. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    19. Zentar, Rachid & Dubois, Vincent & Abriak, Nor Edine, 2008. "Mechanical behaviour and environmental impacts of a test road built with marine dredged sediments," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 947-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:120:y:2017:i:c:p:176-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.