IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10676-d1188268.html
   My bibliography  Save this article

Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement

Author

Listed:
  • Jingjing Xiao

    (Key Laboratory of Transport Industry of Road Structure and Material (Research Institute of Highway, Ministry of Transport), Beijing 100088, China
    School of Civil Engineering, Chang’an University, Xi’an 710064, China)

  • Teng Wang

    (School of Highway, Chang’an University, Xi’an 710064, China
    Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China)

  • Jinlong Hong

    (School of Civil Engineering, Chang’an University, Xi’an 710064, China)

  • Chong Ruan

    (School of Highway, Chang’an University, Xi’an 710064, China
    Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China)

  • Yufei Zhang

    (School of Highway, Chang’an University, Xi’an 710064, China
    Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China)

  • Dongdong Yuan

    (School of Highway, Chang’an University, Xi’an 710064, China
    Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China)

  • Wangjie Wu

    (School of Highway, Chang’an University, Xi’an 710064, China
    Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China)

Abstract

The current focus of research attention on reclaimed asphalt pavement (RAP) utilization is expanding the applications of RAP. This study aims to analyze the road performance of recycled permeable asphalt mixtures (RPAMs), which represents a novel direction for utilizing RAP. Firstly, the Marshall design method was used to carry out the material composition design of the RPAM with varying RAP contents (10%, 20%, and 30%). Subsequently, the performance of the RPAM with different RAP contents (10%, 20%, and 30%) and preheating temperatures (120 °C, 130 °C, 140 °C, 150 °C, and 160 °C) was tested with a permeable asphalt mixture containing 12% high-viscosity asphalt as the control group. The mixture’s performance included high-temperature stability, low-temperature crack resistance, water stability, anti-raveling performance, and dynamic mechanical properties. The results indicate that the higher the RAP content, the better the high-temperature performance of the RPAM, while the low-temperature performance, water stability, and anti-raveling performance deteriorate. At 30% RAP content, its pavement performance is comparable to that of the control group mixture. However, increasing RAP preheating temperature can improve low-temperature and water stability but may reduce high-temperature performance. The optimal RAP preheating temperature for pavement performance is between 140 and 150 °C. The dynamic modulus test showed that the higher the RAP content, the greater the dynamic modulus of the RPAM, leading to better high-temperature stability but reduced low-temperature crack resistance. The influence of RAP preheating temperature is the opposite. These test results demonstrate the feasibility of utilizing RAP for paving permeable asphalt pavement under controlled RAP content and preheating temperature conditions.

Suggested Citation

  • Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10676-:d:1188268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaid Hazim Al-Saffar & Haryati Yaacob & Herda Yati Katman & Mohd Khairul Idham Mohd Satar & Munder Bilema & Ramadhansyah Putra Jaya & Ahmed Salama Eltwati & Hassanain Radhi Radeef, 2021. "A Review on the Durability of Recycled Asphalt Mixtures Embraced with Rejuvenators," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    2. Emiliano Prosperi & Edoardo Bocci & Maurizio Bocci, 2022. "Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    3. Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    4. Emiliano Prosperi & Edoardo Bocci, 2021. "A Review on Bitumen Aging and Rejuvenation Chemistry: Processes, Materials and Analyses," Sustainability, MDPI, vol. 13(12), pages 1-35, June.
    5. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng Wang & Xianwu Ling & Jun Lin & Bing Xiang & Dongdong Yuan & Wentong Wang & Di Wang & Dedong Guo, 2023. "Effect of Blending Behavior on the Performance of Hot Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    2. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    3. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    4. Kunpeng Zheng & Jian Xu & Jie Wang, 2023. "Viscoelasticity of Recycled Asphalt Mixtures with High Content Reclaimed SBS Modified Asphalt Pavement," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    5. Teng Wang & Zhirong Chen & Jinlong Hong & Zhen Liao & Di Wang & Dongdong Yuan & Yufei Zhang & Augusto Cannone Falchetto, 2023. "Preparation and Properties of High-Viscosity Modified Asphalt with a Novel Thermoplastic Rubber," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    6. Zhifeng Li & Huan Wang & Pei Wan & Quantao Liu & Shi Xu & Jian Jiang & Lulu Fan & Liangliang Tu, 2023. "Healing Evaluation of Asphalt Mixtures with Polymer Capsules Containing Rejuvenator under Different Water Solutions," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    7. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    8. Teng Wang & Xin Zhao & Lele Zheng & Chengxin Mao & Li Wang & Augusto Cannone Falchetto & Dedong Guo, 2024. "Hot In-Place Recycled Asphalt Mixtures: RAP Analysis, Compaction Characteristics and Field Evaluation," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    9. Shuai Li & Yanwei Li & Yiqiu Tan & Jilu Li & Di Wang & Dongdong Yuan & Jianli Zhang, 2023. "A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO 2 Modification," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    10. Jiang, Wei & Zhang, Shuo & Wang, Teng & Zhang, Yufei & Sha, Aimin & Xiao, Jingjing & Yuan, Dongdong, 2024. "Evaluation method for the availability of solar energy resources in road areas before route corridor planning," Applied Energy, Elsevier, vol. 356(C).
    11. Emiliano Prosperi & Edoardo Bocci & Maurizio Bocci, 2022. "Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    12. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    13. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    14. Aner Martinez-Soto & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody & Constanza Avendaño-Vera & Camila Martínez-Toledo, 2022. "Comparison of Environmental Loads of Fibers Used in the Manufacture of Hot Mix Asphalt (HMA) and Stone Mastic Asphalt (SMA) Mixes Using a Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    15. Joung, Jaewon & Kang, Yong-Kwon & Nam, Yujin & Jeong, Jae-Weon, 2024. "Analysis of power generation considering design and finishing materials of thermoelectric energy harvesting blocks," Renewable Energy, Elsevier, vol. 231(C).
    16. Zhongcai Huang & Rong Lu & Zhiyu Fu & Jingxiao Li & Pengfei Li & Di Wang & Ben Wei & Weining Zhu & Zujian Wang & Xinyu Wang, 2023. "Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    17. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    18. Cao, Xuan & Kong, Gangqiang & Han, Chanjuan, 2024. "Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China," Energy, Elsevier, vol. 290(C).
    19. He, Hongxi & Xie, Yongchuan & Zuo, Qingsong & Chen, Wei & Shen, Zhuang & Ma, Ying & Zhang, Hehui & Zhu, Guohui & Ouyang, Yixuan, 2024. "Optimization analysis for thermoelectric performance improvement of biconical segmented annular thermoelectric generator," Energy, Elsevier, vol. 306(C).
    20. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10676-:d:1188268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.