IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14546-d1254859.html
   My bibliography  Save this article

Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe

Author

Listed:
  • Gabriella Buttitta

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Gaspare Giancontieri

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Tony Parry

    (Atkins Ltd., The Hub, 500 Park Ave., Aztec W, Almondsbury, Bristol BS32 4RZ, UK)

  • Davide Lo Presti

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

Abstract

The road pavement industry, worldwide, has often shown reluctance in quickly implementing innovative practices; however, in the case of raw material consumption, a cultural change is necessary and, in this sense, sustainability assessment could play a major role. Along these lines, this research study aims to provide evidence to all the involved stakeholders (material producers, pavement contractors, and road authorities) of how life cycle-based techniques can be crucial in evaluating whether the adoption of asphalt mixtures with high contents of reclaimed asphalt (RA) for wearing courses is actually a sustainable practice for major European roads. An evaluation framework composed of a life cycle assessment, to calculate the carbon footprint of both pavement materials and pavement activities, and a life cycle cost assessment, performed to determine the overall economic burden of the related road pavement surface courses and maintenance strategies over a sixty-year analysis period, is presented and applied to selected case studies. These were developed together with three major European national road authorities and include scenarios involving the construction of road surfaces with asphalt mixtures containing up to 90% RA. Results have shown that whenever high-content RA mixes do not under-perform against conventional mixtures, up to 50% CO 2 eq savings can be registered and up to 60% economic cost reductions can be reported. The durability of road pavement layers remains a key parameter for any road pavement sustainability assessment exercises; therefore, in order to adapt the obtained results to other contexts, researchers should always consider conducting a sensitivity analysis of the reference service life and/or road authorities should somehow request road pavement durability as a pre-requisite within procurement practices.

Suggested Citation

  • Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14546-:d:1254859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    2. Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    3. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    4. Thenoux, Guillermo & González, Álvaro & Dowling, Rafael, 2007. "Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 325-339.
    5. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    6. Chiu, Chui-Te & Hsu, Tseng-Hsing & Yang, Wan-Fa, 2008. "Life cycle assessment on using recycled materials for rehabilitating asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 545-556.
    7. Huang, Yue & Bird, Roger N. & Heidrich, Oliver, 2007. "A review of the use of recycled solid waste materials in asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    2. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    4. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    5. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    6. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    7. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    8. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    9. Kristina Henzler & Stephanie D. Maier & Michael Jäger & Rafael Horn, 2020. "SDG-Based Sustainability Assessment Methodology for Innovations in the Field of Urban Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    10. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    11. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    12. Primož Jelušič & Süleyman Gücek & Bojan Žlender & Cahit Gürer & Rok Varga & Tamara Bračko & Murat V. Taciroğlu & Burak E. Korkmaz & Şule Yarcı & Borut Macuh, 2023. "Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    13. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    14. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    15. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    16. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    17. Oana Țugulea, 2017. "City Brand Personality—Relations with Dimensions and Dimensions Inter-Relations," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    18. Robin Hogrefe & Sabine Bohnet-Joschko, 2023. "The Social Dimension of Corporate Sustainability: Review of an Evolving Research Field," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    19. Cristina López & Rocío Ruíz-Benítez & Carmen Vargas-Machuca, 2019. "On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    20. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14546-:d:1254859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.