IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2241-d1046625.html
   My bibliography  Save this article

Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures

Author

Listed:
  • Firas Barraj

    (Department of Civil and Environmental Engineering, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107, Lebanon
    Department of Civil and Environmental Engineering, University of Balamand, P.O. Box 100, Al Koura 1304, Lebanon)

  • Sarah Mahfouz

    (Department of Civil and Environmental Engineering, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107, Lebanon)

  • Hussein Kassem

    (Department of Civil and Environmental Engineering, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107, Lebanon)

  • Jamal Khatib

    (Department of Civil and Environmental Engineering, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107, Lebanon
    Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton DY3 3PX, UK)

  • Dimitrios Goulias

    (Department of Civil and Environmental Engineering, Faculty of Engineering, University of Maryland, College Park, MD 20742, USA)

  • Adel Elkordi

    (Department of Civil and Environmental Engineering, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107, Lebanon
    Department of Civil and Environmental Engineering, Faculty of Engineering, Alexandria University, Alexandria 21511, Egypt)

Abstract

Due to the depletion of natural aggregates and high maintenance cost of highway systems, developing sustainable asphalt concrete (AC) mixes that use waste materials instead of virgin raw materials is necessary. A large amount of waste glass material is globally generated per year that could be beneficial to sustain the asphalt industry. In this context, the present paper evaluates the properties and performance of AC mixtures that utilize crushed waste glass as a replacement material of filler aggregates. Three AC mixes with percentages of filler replacement in the range from 0%, 25%, to 50% were fabricated. Complex modulus testing was performed to evaluate the dynamic modulus |E*| and phase angle δ over a range of temperatures and loading frequencies. In addition, the flow number (FN) test was conducted to assess the rutting potential of the mixtures. The results showed that the mix containing 25% of crushed glass is likely to better resist fatigue cracking; however, the inclusion of glass in the AC reduced the rutting resistance compared to conventional hot mix asphalt (HMA). Finally, the results of the flow number test and the simple performance indicators were compared and used to rank the mechanical performance of the various mixtures.

Suggested Citation

  • Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2241-:d:1046625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    2. Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    3. Huang, Yue & Bird, Roger N. & Heidrich, Oliver, 2007. "A review of the use of recycled solid waste materials in asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    3. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    4. Primož Jelušič & Süleyman Gücek & Bojan Žlender & Cahit Gürer & Rok Varga & Tamara Bračko & Murat V. Taciroğlu & Burak E. Korkmaz & Şule Yarcı & Borut Macuh, 2023. "Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    5. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    6. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    7. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    8. Sher Jahan Khan & Saeed Badghish & Puneet Kaur & Rajat Sharma & Amandeep Dhir, 2023. "What motivates the purchasing of green apparel products? A systematic review and future research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4183-4201, November.
    9. Feng Ma & Aimin Sha & Ruiyu Lin & Yue Huang & Chao Wang, 2016. "Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China," IJERPH, MDPI, vol. 13(3), pages 1-15, March.
    10. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    11. Lin, Chitsan & Huang, Chun-Lan & Shern, Chien-Chuan, 2008. "Recycling waste tire powder for the recovery of oil spills," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1162-1166.
    12. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    13. Skaf, Marta & Manso, Juan M. & Aragón, Ángel & Fuente-Alonso, José A. & Ortega-López, Vanesa, 2017. "EAF slag in asphalt mixes: A brief review of its possible re-use," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 176-185.
    14. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    15. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    16. Casey, Donnchadh & McNally, Ciaran & Gibney, Amanda & Gilchrist, Michael D., 2008. "Development of a recycled polymer modified binder for use in stone mastic asphalt," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1167-1174.
    17. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    18. Marco Pasetto & Andrea Baliello & Giovanni Giacomello & Emiliano Pasquini, 2023. "The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review," Sustainability, MDPI, vol. 15(11), pages 1-32, May.
    19. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    20. Luorui Zheng & Yingzhen Li & Cheng Qian & Yanjun Du, 2023. "Carbon Emission Evaluation of Roadway Construction at Contaminated Sites Based on Life Cycle Assessment Method," Sustainability, MDPI, vol. 15(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2241-:d:1046625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.