IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2009i1p37-44.html
   My bibliography  Save this article

Study on recycled asphalt concrete for use in surface course in airport pavement

Author

Listed:
  • Su, Kai
  • Hachiya, Yoshitaka
  • Maekawa, Ryota

Abstract

This research investigated the possibility of using recycled asphalt concrete as surface course in airport pavement. The basic properties of recycled asphalt binder after short- and long-term aging were firstly tested and compared with those of the virgin asphalt. Then, a series of laboratory tests were performed to evaluate the performance of recycled asphalt concrete (containing 40% and 70% RAP), in which the HMA mixture without RAP was used as a control. Furthermore, an experimental pavement consisting of three sections (corresponding to 0%, 40% and 70% RAP content) was constructed to verify the laboratory test results. These results indicated that the recycled asphalt could achieve the similar properties against long-term aging as virgin asphalt. Recycled asphalt concrete containing 40% RAP could be used as surface course in airport pavement as it exhibited similar performance as control mixture both from the laboratory and experimental pavement test results. On the contrary, recycled asphalt concrete containing 70% RAP was not recommended as its fatigue property was much poorer compared with that of virgin asphalt mixture.

Suggested Citation

  • Su, Kai & Hachiya, Yoshitaka & Maekawa, Ryota, 2009. "Study on recycled asphalt concrete for use in surface course in airport pavement," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 37-44.
  • Handle: RePEc:eee:recore:v:54:y:2009:i:1:p:37-44
    DOI: 10.1016/j.resconrec.2009.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909001293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiu, Chui-Te & Hsu, Tseng-Hsing & Yang, Wan-Fa, 2008. "Life cycle assessment on using recycled materials for rehabilitating asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 545-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiran Sapkota & Ehsan Yaghoubi & P. L. P. Wasantha & Rudi Van Staden & Sam Fragomeni, 2023. "Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    2. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    3. Nili, Maryam & Seyedhosseini, Seyed Mohammad & Jabalameli, Mohammad Saeed & Dehghani, Ehsan, 2021. "A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    5. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. Ahmad, Firoz & Alnowibet, Khalid A. & Alrasheedi, Adel F. & Adhami, Ahmad Yusuf, 2022. "A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    7. Ahsen Hamid & Naveed Ahmad & Bilal Zaidi & Raja Abubakar Khalid & Imran Hafeez & Jawad Hussain & Anwar Khitab & Mehmet Serkan Kırgız, 2023. "GlasSphalt: A Borosilicate Based Sustainable Engineering Material for Asphalt Pavements," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    8. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    9. Paolino Caputo & Pietro Calandra & Valeria Loise & Adolfo Le Pera & Ana-Maria Putz & Abraham A. Abe & Luigi Madeo & Bagdat Teltayev & Maria Laura Luprano & Michela Alfè & Valentina Gargiulo & Giovanna, 2022. "When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    10. Vidal, Rosario & Moliner, Enrique & Martínez, Germán & Rubio, M. Carmen, 2013. "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 101-114.
    11. Aurangzeb, Qazi & Al-Qadi, Imad L. & Ozer, Hasan & Yang, Rebekah, 2014. "Hybrid life cycle assessment for asphalt mixtures with high RAP content," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 77-86.
    12. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    13. Bradley Kloostra & Benjamin Makarchuk & Shoshanna Saxe, 2022. "Bottom‐up estimation of material stocks and flows in Toronto's road network," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 875-890, June.
    14. Dehghanian, Farzad & Mansour, Saeed, 2009. "Designing sustainable recovery network of end-of-life products using genetic algorithm," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 559-570.
    15. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    16. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    17. Silva, Hugo M.R.D. & Oliveira, Joel R.M. & Jesus, Carlos M.G., 2012. "Are totally recycled hot mix asphalts a sustainable alternative for road paving?," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 38-48.
    18. Anne de Bortoli & Adélaïde Féraille & Fabien Leurent, 2022. "Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies," Post-Print hal-04483847, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2009:i:1:p:37-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.