IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v202y2017icp248-258.html
   My bibliography  Save this article

The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model

Author

Listed:
  • Lin, Haiyang
  • Wang, Qinxing
  • Wang, Yu
  • Liu, Yiling
  • Sun, Qie
  • Wennersten, Ronald

Abstract

This paper developed an agent-based model (ABM) to explore the energy saving potentials (ESPs) of various types of appliances in offices under different pricing mechanisms. The model included four types of commonly used appliances in office buildings: an air conditioner (AC), computers, lights and a basic load. The total ESPs of the entire office are 6.7% and 17.4% on the second and the third price tier of the tiered pricing mechanism (TEP), while the ESPs are 11.8% and 14.2% under the peak-valley pricing (PVP) and critical peak pricing (CPP), respectively. Within different types of appliances, AC consumes the largest amount of electricity, over 50%, while the ESPs of the AC under different pricing mechanisms are only 6.9–12.1%. In contrast, the lights have the biggest ESP, i.e. 14.1–53.4%, under various pricing levels. Both the pricing mechanisms of PVP and CPP only have the effect of peak clipping and do not have a significant effect of valley filling, since there is no people working in the office during the valley price period. The maximum ESP, which is based on people’s maximum-saving behavior, is much larger than the ESPs on the basis of people’s ordinary consumption patterns. This implies the importance of improving people’s awareness of energy saving and refining their behaviors. Lastly, the model developed in this study provides a generic platform for simulating many types of energy systems and is very effective for handling the complicated relations between different types of technology and the way how they are used and interacted with each other. ABMs have very good adaptability and capacity in simulating energy systems.

Suggested Citation

  • Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
  • Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:248-258
    DOI: 10.1016/j.apenergy.2017.05.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    2. Sahin, Mustafa Cagri & Aydinalp Koksal, Merih, 2014. "Standby electricity consumption and saving potentials of Turkish households," Applied Energy, Elsevier, vol. 114(C), pages 531-538.
    3. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    4. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    5. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    6. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    7. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    8. Sandels, C. & Widén, J. & Nordström, L., 2014. "Forecasting household consumer electricity load profiles with a combined physical and behavioral approach," Applied Energy, Elsevier, vol. 131(C), pages 267-278.
    9. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    10. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    11. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    12. Liang, Han-Hsi & Lin, Tzu-Ping & Hwang, Ruey-Lung, 2012. "Linking occupants’ thermal perception and building thermal performance in naturally ventilated school buildings," Applied Energy, Elsevier, vol. 94(C), pages 355-363.
    13. Maya Sopha, Bertha & Klöckner, Christian A. & Hertwich, Edgar G., 2011. "Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation," Energy Policy, Elsevier, vol. 39(5), pages 2722-2729, May.
    14. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    15. Li, Hailong & Sun, Qie & Zhang, Qi & Wallin, Fredrik, 2015. "A review of the pricing mechanisms for district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 56-65.
    16. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    17. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    18. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    19. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenzhuo & Wang, Shengwei & Koo, Choongwan, 2021. "A real-time optimal control strategy for multi-zone VAV air-conditioning systems adopting a multi-agent based distributed optimization method," Applied Energy, Elsevier, vol. 287(C).
    2. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    3. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    4. Dasheng Lee & Liyuan Chen, 2022. "Sustainable Air-Conditioning Systems Enabled by Artificial Intelligence: Research Status, Enterprise Patent Analysis, and Future Prospects," Sustainability, MDPI, vol. 14(12), pages 1-82, June.
    5. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    6. Li, Li & Wang, Jing & Zhong, Xiaoyi & Lin, Jian & Wu, Nianyuan & Zhang, Zhihui & Meng, Chao & Wang, Xiaonan & Shah, Nilay & Brandon, Nigel & Xie, Shan & Zhao, Yingru, 2022. "Combined multi-objective optimization and agent-based modeling for a 100% renewable island energy system considering power-to-gas technology and extreme weather conditions," Applied Energy, Elsevier, vol. 308(C).
    7. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
    8. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    9. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    10. Lin, Haiyang & Liu, Yiling & Sun, Qie & Xiong, Rui & Li, Hailong & Wennersten, Ronald, 2018. "The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation," Applied Energy, Elsevier, vol. 230(C), pages 189-206.
    11. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    12. Sun, Qie & Fu, Yu & Lin, Haiyang & Wennersten, Ronald, 2022. "A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties," Applied Energy, Elsevier, vol. 314(C).
    13. Zhang, Zhihui & Jing, Rui & Lin, Jian & Wang, Xiaonan & van Dam, Koen H. & Wang, Meng & Meng, Chao & Xie, Shan & Zhao, Yingru, 2020. "Combining agent-based residential demand modeling with design optimization for integrated energy systems planning and operation," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    2. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    3. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    7. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    8. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    9. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    10. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    11. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    12. Wang, Zhaohua & Li, Hao & Deng, Nana & Cheng, Kaiwei & Lu, Bin & Zhang, Bin & Wang, Bo, 2020. "How to effectively implement an incentive-based residential electricity demand response policy? Experience from large-scale trials and matching questionnaires," Energy Policy, Elsevier, vol. 141(C).
    13. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.
    14. Jian Wang & Jin-Chun Huang & Shan-Lin Huang & Gwo-Hshiung Tzeng & Ting Zhu, 2021. "Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model," IJERPH, MDPI, vol. 18(9), pages 1-30, May.
    15. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    16. Li, Yao & Fan, Jin & Zhao, Dingtao & Wu, Yanrui & Li, Jun, 2016. "Tiered gasoline pricing: A personal carbon trading perspective," Energy Policy, Elsevier, vol. 89(C), pages 194-201.
    17. Lin, Boqiang & Zhu, Penghu, 2021. "Has increasing block pricing policy been perceived in China? Evidence from residential electricity use," Energy Economics, Elsevier, vol. 94(C).
    18. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    19. Chang Liu & Boqiang Lin, 2018. "Evaluating Design of Increasing Block Tariffs for Residential Natural Gas in China: A Case Study of Henan Province," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1335-1351, December.
    20. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:202:y:2017:i:c:p:248-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.