IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13542-d697018.html
   My bibliography  Save this article

An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm

Author

Listed:
  • Nitesh Kumar Singh

    (Department of Electronics and Communication Engineering, National Institute of Technology Mizoram, Aizawl 796012, India)

  • Chaitali Koley

    (Department of Electronics and Communication Engineering, National Institute of Technology Mizoram, Aizawl 796012, India)

  • Sadhan Gope

    (Department of Electrical Engineering, Mizoram University, Aizawl 796004, India)

  • Subhojit Dawn

    (Department of Electrical and Electronics Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, India)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

Abstract

Due to the restructuring of the power system, customers always try to obtain low-cost power efficiently and reliably. As a result, there is a chance to violate the system security limit, or the system may run in risk conditions. In this paper, an economic risk analysis of a power system considering wind and pumped hydroelectric storage (WPHS) hybrid system is presented with the help of meta-heuristic algorithms. The value-at-risk (VaR) and conditional value-at-risk (CVaR) are used as the economic risk analysis tool with two different confidence levels (i.e., 95% and 99%). The VaR and CVaR with higher negative values represent the system in a higher-risk condition. The value of VaR and CVaR on the lower negative side or towards a positive value side indicates a less risky system. The main objective of this work is to minimize the system risk as well as minimize the system generation cost by optimal placement of wind farm and pumped hydro storage systems in the power system. Sequential quadratic programming (SQP), artificial bee colony algorithms (ABC), and moth flame optimization algorithms (MFO) are used to solve optimal power flow problems. The novelty of this paper is that the MFO algorithm is used for the first time in this type of power risk curtailment problem. The IEEE 30 bus system is considered to analyze the system risk with the different confidence levels. The MVA flow of all transmission lines is considered here to calculate the value of VaR and CVaR. The hourly VaR and CVaR values of the hybrid system considering the WPHS system are reported here and the numerical case studies of the hybrid WPHS system demonstrate the effectiveness of the proposed approach. To validate the presented approach, the results obtained by using the MFO algorithm are compared with the SQP and ABC algorithms’ results.

Suggested Citation

  • Nitesh Kumar Singh & Chaitali Koley & Sadhan Gope & Subhojit Dawn & Taha Selim Ustun, 2021. "An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13542-:d:697018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minhui Qian & Ning Chen & Yuge Chen & Changming Chen & Weiqiang Qiu & Dawei Zhao & Zhenzhi Lin, 2021. "Optimal Coordinated Dispatching Strategy of Multi-Sources Power System with Wind, Hydro and Thermal Power Based on CVaR in Typhoon Environment," Energies, MDPI, vol. 14(13), pages 1-35, June.
    2. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    3. Shin, Hunyoung & Baldick, Ross, 2018. "Mitigating market risk for wind power providers via financial risk exchange," Energy Economics, Elsevier, vol. 71(C), pages 344-358.
    4. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    2. Jianfeng Dai & Cangbi Ding & Xia Zhou & Yi Tang, 2022. "Adaptive Frequency Control Strategy for PMSG-Based Wind Power Plant Considering Releasable Reserve Power," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    3. Luay Elkhidir & Khalid Khan & Mohammad Al-Muhaini & Muhammad Khalid, 2022. "Enhancing Transient Response and Voltage Stability of Renewable Integrated Microgrids," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    4. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    5. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    6. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    7. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    8. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    2. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    3. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    4. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    5. Zhongwei Feng & Chunqiao Tan & Jinchun Zhang & Qiang Zeng, 2021. "Bargaining Game with Altruistic and Spiteful Preferences," Group Decision and Negotiation, Springer, vol. 30(2), pages 277-300, April.
    6. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    7. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    8. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    9. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    10. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    11. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
    12. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    13. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    14. Meng, Anbo & Wu, Zhenbo & Zhang, Zhan & Xu, Xuancong & Tang, Yanshu & Xie, Zhifeng & Xian, Zikang & Zhang, Haitao & Luo, Jianqiang & Wang, Yu & Yan, Baiping & Yin, Hao, 2024. "Optimal scheduling of integrated energy system using decoupled distributed CSO with opposition-based learning and neighborhood re-dispatch strategy," Renewable Energy, Elsevier, vol. 224(C).
    15. Yao, Haotian & Xiang, Yue & Liu, Junyong, 2022. "Exploring multiple investment strategies for non-utility-owned DGs: A decentralized risked-based approach," Applied Energy, Elsevier, vol. 326(C).
    16. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong, 2023. "Data-driven worst conditional value at risk energy management model of energy station," Energy, Elsevier, vol. 266(C).
    17. He, Shuaijia & Gao, Hongjun & Tang, Zao & Chen, Zhe & Jin, Xiaolong & Liu, Junyong, 2023. "Worst CVaR based energy management for generalized energy storage enabled building-integrated energy systems," Renewable Energy, Elsevier, vol. 203(C), pages 255-266.
    18. Jiang, Qian & Mu, Yunfei & Jia, Hongjie & Cao, Yan & Wang, Zibo & Wei, Wei & Hou, Kai & Yu, Xiaodan, 2022. "A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants," Energy, Elsevier, vol. 258(C).
    19. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13542-:d:697018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.