IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics030626192301084x.html
   My bibliography  Save this article

A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks

Author

Listed:
  • Chen, Lei
  • Jiang, Yuqi
  • Zheng, Shencong
  • Deng, Xinyi
  • Chen, Hongkun
  • Islam, Md. Rabiul

Abstract

Introducing energy storage systems (ESSs) into active distribution networks (ADNs) has attracted increasing attention due to the ability to smooth power fluctuations and improve resilience against fault disturbances. This paper proposes a methodology for simultaneously optimizing the configuration of battery ESSs and the operation of ADNs, and the goal is to increase the resilience of the ADNs withstanding multi-faults. Firstly, based on random sampling and K-means clustering, a generation strategy of typical N-1 and N-2 fault scenarios is designed for the ADNs. Then, a two-layer optimization model is established, where the inner model is to optimize the fault recovery performance from the operational perspective, and the outer model is to obtain the optimal site and size of ESSs from the economic perspective. Further, the second-order cone relaxing (SOCR) method and the hybrid gray wolf optimal and particle swarm optimal (GWO-PSO) algorithm are applied to solve the optimization model. Using MATLAB, the modified IEEE 33-node and 118-node systems are built to check the proposed approach's performance. Different periods are considered to show the multi-faults' development, and by introducing a resilience assessment system with node voltage deviation, fault recovery rate, and network loss rate, the resilience of the ADNs is analyzed. From the comparative results, the proposed approach can optimally configure the battery ESSs, and adjust the network structure as well as the distributed generation outputs. Following the ESS configuration cost reduction of 53.19% and 9.8%, the resilience of the ADNs against the multi-faults will increase by 13.36% and 8.25% for the 33-node and 118-node systems.

Suggested Citation

  • Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s030626192301084x
    DOI: 10.1016/j.apenergy.2023.121720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Chen, Ying & Shen, Chen, 2022. "Equilibrium allocation strategy of multiple ESSs considering the economics and restoration capability in DNs," Applied Energy, Elsevier, vol. 306(PA).
    2. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    3. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    4. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    5. Izadi, Mehdi & Hossein Hosseinian, Seyed & Dehghan, Shahab & Fakharian, Ahmad & Amjady, Nima, 2023. "Resiliency-Oriented operation of distribution networks under unexpected wildfires using Multi-Horizon Information-Gap decision theory," Applied Energy, Elsevier, vol. 334(C).
    6. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    7. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    8. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shui Ji & Yun Liu & Shanshan Wu & Xiao Li, 2024. "Resilience Improvement of Microgrid Cluster Systems Based on Two-Stage Robust Optimization," Energies, MDPI, vol. 17(17), pages 1-12, August.
    2. Souto, Laiz & Parisio, Alessandra & Taylor, Philip C., 2024. "MPC-based framework incorporating pre-disaster and post-disaster actions and transportation network constraints for weather-resilient power distribution networks," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    2. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    3. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    4. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    5. Sang-Guk Yum & Kiyoung Son & Seunghyun Son & Ji-Myong Kim, 2020. "Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    6. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    8. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    9. Liping Huang & Zhaoxiong Huang & Chun Sing Lai & Guangya Yang & Zhuoli Zhao & Ning Tong & Xiaomei Wu & Loi Lei Lai, 2021. "Augmented Power Dispatch for Resilient Operation through Controllable Series Compensation and N-1-1 Contingency Assessment," Energies, MDPI, vol. 14(16), pages 1-24, August.
    10. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    11. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    12. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
    13. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    14. Banghua Xie & Changfan Li & Zili Wu & Weiming Chen, 2021. "Topological Modeling Research on the Functional Vulnerability of Power Grid under Extreme Weather," Energies, MDPI, vol. 14(16), pages 1-27, August.
    15. Zhang, Wangxin & Han, Qiang & Shang, Wen-Long & Xu, Chengshun, 2024. "Seismic resilience assessment of interdependent urban transportation-electric power system under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    16. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    18. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    19. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Yao, Haotian & Xiang, Yue & Liu, Junyong, 2022. "Exploring multiple investment strategies for non-utility-owned DGs: A decentralized risked-based approach," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s030626192301084x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.