IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6448-d569728.html
   My bibliography  Save this article

A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization

Author

Listed:
  • Farzad Hamrang

    (Department of Mechanical Engineering, University of Tabriz, Tabriz 51666-14766, Iran)

  • S. M. Seyed Mahmoudi

    (Department of Mechanical Engineering, University of Tabriz, Tabriz 51666-14766, Iran)

  • Marc A. Rosen

    (Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada)

Abstract

Based on the benefits of integrated gasification combined cycles (IGCCs), a cogeneration plant for providing electricity and freshwater is proposed. The main novelties of the devised system are the integration of biomass gasification and a regenerative gas turbine with intercooling and a syngas combustor, where the syngas produced in the gasifier is burned in the combustion chamber and fed to a gas turbine directly. The energy discharged from the gas turbine is utilized for further electricity and freshwater generation via Kalina and MED hybridization. The proposed system is analyzed from energy, exergy, exergoeconomic, and reliability–availability viewpoints. The optimal operating condition and optimum performance criteria are obtained by hybridizing an artificial neural network (ANN), the multi-objective particle swarm optimization (MOPSO) algorithm. According to results obtained, for the fourth scenario of the optimization process, optimal values of 45.10 % , 14.27 kg · s − 1 , 12.95 USD · GJ − 1 , and 8141 kW are obtained for the exergy efficiency, freshwater production rate, sum unit cost of products, and net output power, respectively. According to reliability and availability assessment, the probability of the healthy working state of all components and subsystems is 88.4403 % ; the system is shown to be 87.74 % available of the time over the 20-year lifetime.

Suggested Citation

  • Farzad Hamrang & S. M. Seyed Mahmoudi & Marc A. Rosen, 2021. "A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6448-:d:569728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    2. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    3. Baccioli, A. & Antonelli, M. & Desideri, U. & Grossi, A., 2018. "Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications," Energy, Elsevier, vol. 161(C), pages 456-469.
    4. Ahmadi, Pouria & Rosen, Marc A. & Dincer, Ibrahim, 2012. "Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm," Energy, Elsevier, vol. 46(1), pages 21-31.
    5. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    6. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    7. Yao, Zhiyi & You, Siming & Ge, Tianshu & Wang, Chi-Hwa, 2018. "Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation," Applied Energy, Elsevier, vol. 209(C), pages 43-55.
    8. Saldivia, David & Rosales, Carlos & Barraza, Rodrigo & Cornejo, Lorena, 2019. "Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile," Renewable Energy, Elsevier, vol. 132(C), pages 206-220.
    9. Parraga, Joel & Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2018. "Polygeneration with biomass-integrated gasification combined cycle process: Review and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 219-234.
    10. Bo Liu & Deepak Rajagopal, 2019. "Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States," Nature Energy, Nature, vol. 4(8), pages 700-708, August.
    11. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    12. Zare, V., 2016. "Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant," Energy, Elsevier, vol. 96(C), pages 187-196.
    13. Sayyaadi, Hoseyn & Saffari, Arash, 2010. "Thermoeconomic optimization of multi effect distillation desalination systems," Applied Energy, Elsevier, vol. 87(4), pages 1122-1133, April.
    14. Gambarotta, Agostino & Morini, Mirko & Zubani, Andrea, 2018. "A non-stoichiometric equilibrium model for the simulation of the biomass gasification process," Applied Energy, Elsevier, vol. 227(C), pages 119-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakibi, Hamid & Faal, Mehrdad Yousefi & Assareh, Ehsanolah & Agarwal, Neha & Yari, Mortaza & Latifi, Seyed Ali & Ghodrat, Maryam & Lee, Moonyong, 2023. "Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Austr," Energy, Elsevier, vol. 278(C).
    2. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    3. Asgari, Armin & Jannatkhah, Javad & Yari, Mortaza & Najafi, Bahman, 2023. "Multi-aspect assessment and multi-objective optimization of sustainable power, heating, and cooling tri-generation system driven by experimentally-produced biodiesels," Energy, Elsevier, vol. 263(PC).
    4. Yin, Pei & Sardari, Farshid, 2023. "Process arrangement and multi-criteria study/optimization of a novel hybrid solar-geothermal scheme combined with a compressed air energy storage: Application of different MOPSO-based scenarios," Energy, Elsevier, vol. 282(C).
    5. Asgari, Armin & Tajaddod, Hadi & Zirak, Reza & Mahmoodi, Reza, 2024. "Proposal of a geothermal-driven multigeneration system for power, cooling, and fresh water: Thermoeconomic assessment and optimization," Energy, Elsevier, vol. 301(C).
    6. Zhu, Chaoyang & Wang, Mengxia & Guo, Mengxing & Deng, Jinxin & Du, Qipei & Wei, Wei & Zhang, Yunxiang & Mohebbi, Amir, 2024. "An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and he," Energy, Elsevier, vol. 292(C).
    7. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    8. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    9. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    10. Zheng, Shanshan & Hai, Qing & Zhou, Xiao & Stanford, Russell J., 2024. "A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
    11. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    12. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    13. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    14. Gao, Jinling & Wang, Ziwei & Li, Xuetao & Zhou, Xiao, 2024. "Investigation of a novel scheme utilizing solar and geothermal energies, generating power and ammonia: Exergoeconomic and exergoenvironmental analyses and cuckoo search optimization," Energy, Elsevier, vol. 298(C).
    15. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
    16. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    17. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    18. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    2. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    3. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    4. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    5. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    6. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    7. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    8. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2022. "Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimiz," Energy, Elsevier, vol. 261(PA).
    9. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    10. Ibrahim, A. & Veremieiev, S. & Gaskell, P.H., 2022. "An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 912-925.
    11. Van Vang Le & Lan Huong Nguyen, 2019. "Design And Fabrication Of Distillation Equipment Of Fresh Water From The Seawater By The Use Of The Waste Heat From Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 79-83, March.
    12. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    13. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    14. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    15. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    16. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    17. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    18. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    19. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    20. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6448-:d:569728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.