IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027736.html
   My bibliography  Save this article

Multi-aspect assessment and multi-objective optimization of sustainable power, heating, and cooling tri-generation system driven by experimentally-produced biodiesels

Author

Listed:
  • Asgari, Armin
  • Jannatkhah, Javad
  • Yari, Mortaza
  • Najafi, Bahman

Abstract

This paper proposes a tri-generation system based on a diesel engine. An organic Rankine cycle and an ejector refrigerant cycle are employed to recover the diesel engine waste energy and produce cooling and more power. Also, a heat exchanger is installed to supply the heating demand. The mass, energy, exergy, exergoeconomic, and environmental analyses are applied to evaluate the proposed system's performance. Twelve biodiesels and pure Diesel energetic, exergetic, exergoeconomic, and environmental performances are compared to select a proper fuel for the designed system. Furthermore, the system's optimum state is evaluated through the exergy-economic assessment. In this regard, the Canola B20 is chosen as the best fuel for the designed system, which provides 7468 kW net power with 37.96% exergetic efficiency, 1.611 sustainability, and 1.635 environmental impact indexes at the base state. The engine exergetic efficiency is influenced by the engine load, while the total exergetic efficiency is affected by the engine speed. Besides, the ORC flow rate as the subsystem variable criteria has the highest effect on the system performance. Also, the system exergetic efficiency and unit product cost are obtained to be 37.96% and 11.196 $/GJ at the optimum state, respectively.

Suggested Citation

  • Asgari, Armin & Jannatkhah, Javad & Yari, Mortaza & Najafi, Bahman, 2023. "Multi-aspect assessment and multi-objective optimization of sustainable power, heating, and cooling tri-generation system driven by experimentally-produced biodiesels," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027736
    DOI: 10.1016/j.energy.2022.125887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    2. Eduardo J. C. Cavalcanti & João Victor M. Ferreira & Monica Carvalho, 2021. "Research on a Solar Hybrid Trigeneration System Based on Exergy and Exergoenvironmental Assessments," Energies, MDPI, vol. 14(22), pages 1-19, November.
    3. Malik, Monu & Dincer, Ibrahim & Rosen, Marc A., 2015. "Development and analysis of a new renewable energy-based multi-generation system," Energy, Elsevier, vol. 79(C), pages 90-99.
    4. Naser Shokati & Farzad Mohammadkhani & Mortaza Yari & Seyed M. S. Mahmoudi & Marc A. Rosen, 2014. "A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles," Sustainability, MDPI, vol. 6(5), pages 1-16, April.
    5. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    6. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    7. Ahmadi, Samareh & Ghaebi, Hadi & Shokri, Afshar, 2019. "A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles," Energy, Elsevier, vol. 186(C).
    8. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    9. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    10. Farzad Hamrang & S. M. Seyed Mahmoudi & Marc A. Rosen, 2021. "A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Fei & Sun, Zhen & Li, Huiping & Qian, Qian, 2023. "Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    2. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    3. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    4. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    5. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    6. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    7. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    8. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    9. Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
    10. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
    11. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    12. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    13. Wang, Erlei & Xia, Jiangying & Li, Jia & Sun, Xianke & Li, Hao, 2022. "Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm," Energy, Elsevier, vol. 261(PA).
    14. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    15. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    16. Tian, Cong & Su, Chang & Yang, Chao & Wei, Xiwen & Pang, Peng & Xu, Jianguo, 2023. "Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle," Energy, Elsevier, vol. 264(C).
    17. Shakibi, Hamid & Faal, Mehrdad Yousefi & Assareh, Ehsanolah & Agarwal, Neha & Yari, Mortaza & Latifi, Seyed Ali & Ghodrat, Maryam & Lee, Moonyong, 2023. "Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Austr," Energy, Elsevier, vol. 278(C).
    18. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    19. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    20. Zhu, Chaoyang & Wang, Mengxia & Guo, Mengxing & Deng, Jinxin & Du, Qipei & Wei, Wei & Zhang, Yunxiang & Mohebbi, Amir, 2024. "An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and he," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.