IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003037.html
   My bibliography  Save this article

Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system

Author

Listed:
  • Dou, Zhenhai
  • Zou, Yunhe
  • Mohebbi, Amir

Abstract

This paper introduces an innovative hybrid system integrating renewable biomass and geothermal energy sources to address contemporary technological and environmental challenges. The proposed system enhances geothermal power plant operations by utilizing biomass combustion products for superheating the steam turbine's inlet stream. Additionally, it incorporates a modified Kalina cycle, flash desalination, and a multi-effect desalination subsystem to efficiently utilize the geothermal plant's waste heat, enabling the simultaneous production of power, heating, cooling, and freshwater. The system's performance is assessed through a combination of thermodynamic and economic analyses. A parametric study investigates the influence of four critical decision parameters on system operations. Moreover, a multi-objective Particle Swarm Optimization algorithm, coupled with a LINMAP decision-making approach, is employed to identify the system's optimal operational state. Results indicate that the system can generate 776.3 kW of power, 237 kW of heating, 15.5 kW of cooling, and 20.35 kg/s of freshwater. This operation mode yields an exergy efficiency of 19.61 % and an economic benefit of 2.78 M$, highlighting the system's dual efficiency and profitability. The performance is significantly influenced by the effectiveness of Heat Exchanger 1. Optimal system performance, characterized by an exergy efficiency of 20.55 % and a payback period of 5.21 years, is also achieved. These findings underscore the system's potential in sustainable energy production and resource optimization.

Suggested Citation

  • Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003037
    DOI: 10.1016/j.energy.2024.130532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    2. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    3. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    4. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    5. Paoletti, V. & Langella, G. & Di Napoli, R. & Amoresano, A. & Meo, S. & Pecoraino, G. & Aiuppa, A., 2015. "A tool for evaluating geothermal power exploitability and its application to Ischia, Southern Italy," Applied Energy, Elsevier, vol. 139(C), pages 303-312.
    6. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    7. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    8. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    9. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    10. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    11. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    12. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    13. Tian, Hao & Li, Ruiheng & Zhu, Yiping, 2023. "Blend of flue gas from a methane-fueled gas turbine power plant and syngas from biomass gasification process to feed a novel trigeneration application: Thermodynamic-economic study and optimization," Energy, Elsevier, vol. 285(C).
    14. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    15. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    16. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    17. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    18. Farzad Hamrang & S. M. Seyed Mahmoudi & Marc A. Rosen, 2021. "A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    19. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    20. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthikeyan, B. & Praveen Kumar, G. & Narayanan, Ramadas & R, Saravanan & Coronas, Alberto, 2024. "Thermo-economic optimization of hybrid solar-biomass driven organic rankine cycle integrated heat pump and PEM electrolyser for combined power, heating, and green hydrogen applications," Energy, Elsevier, vol. 299(C).
    2. Feng, Jieru & Huang, Yiqing & Li, Juqiang & Li, Xuetao, 2024. "Design and multi-criteria optimization and financial assessment of an innovative combined power plant and desalination process," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chaoyang & Wang, Mengxia & Guo, Mengxing & Deng, Jinxin & Du, Qipei & Wei, Wei & Zhang, Yunxiang & Mohebbi, Amir, 2024. "An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and he," Energy, Elsevier, vol. 292(C).
    2. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    3. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    4. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    5. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    6. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    7. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    8. Shakibi, Hamid & Faal, Mehrdad Yousefi & Assareh, Ehsanolah & Agarwal, Neha & Yari, Mortaza & Latifi, Seyed Ali & Ghodrat, Maryam & Lee, Moonyong, 2023. "Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Austr," Energy, Elsevier, vol. 278(C).
    9. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
    10. Zheng, Shanshan & Hai, Qing & Zhou, Xiao & Stanford, Russell J., 2024. "A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
    11. Yu, Jie & Hu, Jianqiang & Yan, Pengyang & Ashraf Talesh, Seyed Saman, 2023. "Optimizing sustainable energy solutions: A comprehensive analysis of geothermal-powered compressed air energy storage system," Energy, Elsevier, vol. 285(C).
    12. Tian, Hao & Li, Ruiheng & Zhu, Yiping, 2023. "Blend of flue gas from a methane-fueled gas turbine power plant and syngas from biomass gasification process to feed a novel trigeneration application: Thermodynamic-economic study and optimization," Energy, Elsevier, vol. 285(C).
    13. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    14. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    15. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    16. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    17. Qing, Xia, 2024. "Solar-driven multi-generation system: Thermoeconomic and environmental optimization for power, cooling, and liquefied hydrogen production," Energy, Elsevier, vol. 293(C).
    18. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    19. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    20. Dan, Ma & He, Ang & Ren, Qiliang & Li, Wenbo & Huang, Kang & Wang, Xiangda & Feng, Boxuan & Sardari, Farshid, 2024. "Multi-aspect evaluation of a novel double-flash geothermally-powered integrated multigeneration system for generating power, cooling, and liquefied Hydrogen," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.