IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224001798.html
   My bibliography  Save this article

An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and heat

Author

Listed:
  • Zhu, Chaoyang
  • Wang, Mengxia
  • Guo, Mengxing
  • Deng, Jinxin
  • Du, Qipei
  • Wei, Wei
  • Zhang, Yunxiang
  • Mohebbi, Amir

Abstract

In the pursuit of enhancing both sustainability and energy density in low-temperature, renewable energy-based cycles, the integration of high-temperature renewable streams is considered a key objective in multigenerational scenarios that focus on renewable energy. This integration is recognized for its ability to reduce irreversibility and facilitate the development of eco-friendly designs. Consequently, the development, analysis, and optimization of an innovative multigenerational system, which utilizes a combination of biomass feedstock and geothermal energy resources, are the aims of this study. In this system, the performance of a geothermal-driven subsystem is significantly enhanced by a biomass-fueled subsystem, contributing to a more efficient overall system. This enhancement involves the integration of biomass digestion with a supercritical CO2 process. The energetic flue gas generated in this process is then utilized to enhance the enthalpy level of geothermal water through a dual-flash process. This process includes an advanced Kalina cycle, enabling combined cooling, heating, and power generation. The feasibility of this structure is examined through a comprehensive analysis that encompasses thermodynamic and economic considerations. The performance optimization is targeted using the Multi-Objective Grey Wolf Optimization technique, and within this framework, two multi-criteria optimization scenarios are defined based on power and heat output, exergy efficiency, and the system's profitability. Furthermore, a detailed sensitivity analysis is conducted, where the impact of variations in five key decision parameters is evaluated. It is indicated by the results that 500.8 kW of power, 900.2 kW of heating, and 4.931 kW of cooling can be provided by the system, which also achieves an exergetic efficiency of 23.08 % and a payback period of 6.87 years.

Suggested Citation

  • Zhu, Chaoyang & Wang, Mengxia & Guo, Mengxing & Deng, Jinxin & Du, Qipei & Wei, Wei & Zhang, Yunxiang & Mohebbi, Amir, 2024. "An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and he," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001798
    DOI: 10.1016/j.energy.2024.130408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    2. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    3. Farzad Hamrang & S. M. Seyed Mahmoudi & Marc A. Rosen, 2021. "A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    4. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    5. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    6. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    7. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    8. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    9. Sevinchan, Eren & Dincer, Ibrahim & Lang, Haoxiang, 2019. "Energy and exergy analyses of a biogas driven multigenerational system," Energy, Elsevier, vol. 166(C), pages 715-723.
    10. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    11. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    12. Yilmaz, Fatih, 2022. "Development and modeling of the geothermal energy based multigeneration plant for beneficial outputs: Thermo-economic and environmental analysis approach," Renewable Energy, Elsevier, vol. 189(C), pages 1074-1085.
    13. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    14. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    15. Tian, Hao & Li, Ruiheng & Zhu, Yiping, 2023. "Blend of flue gas from a methane-fueled gas turbine power plant and syngas from biomass gasification process to feed a novel trigeneration application: Thermodynamic-economic study and optimization," Energy, Elsevier, vol. 285(C).
    16. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    17. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    18. Li, Kun & Ding, Yi-Zhe & Ai, Chen & Sun, Hongwei & Xu, Yi-Peng & Nedaei, Navid, 2022. "Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
    2. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    3. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    4. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    5. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    6. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    7. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    8. Dan, Ma & He, Ang & Ren, Qiliang & Li, Wenbo & Huang, Kang & Wang, Xiangda & Feng, Boxuan & Sardari, Farshid, 2024. "Multi-aspect evaluation of a novel double-flash geothermally-powered integrated multigeneration system for generating power, cooling, and liquefied Hydrogen," Energy, Elsevier, vol. 289(C).
    9. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    10. Shakibi, Hamid & Faal, Mehrdad Yousefi & Assareh, Ehsanolah & Agarwal, Neha & Yari, Mortaza & Latifi, Seyed Ali & Ghodrat, Maryam & Lee, Moonyong, 2023. "Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Austr," Energy, Elsevier, vol. 278(C).
    11. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    12. Abedinia, Oveis & Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Sobhani, Behrouz & Yari, Mortaza & Bagheri, Mehdi, 2024. "Optimization of a syngas-fueled SOFC-based multigeneration system: Enhanced performance with biomass and gasification agent selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    14. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2022. "Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimiz," Energy, Elsevier, vol. 261(PA).
    15. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    16. Tian, Hao & Li, Ruiheng & Zhu, Yiping, 2023. "Blend of flue gas from a methane-fueled gas turbine power plant and syngas from biomass gasification process to feed a novel trigeneration application: Thermodynamic-economic study and optimization," Energy, Elsevier, vol. 285(C).
    17. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    18. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    19. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    20. Qing, Xia, 2024. "Solar-driven multi-generation system: Thermoeconomic and environmental optimization for power, cooling, and liquefied hydrogen production," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.