IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5416-d553222.html
   My bibliography  Save this article

Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids

Author

Listed:
  • Omer A. Alawi

    (Department of Thermofluids, School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

  • Haslinda Mohamed Kamar

    (Department of Thermofluids, School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

  • Abdul Rahman Mallah

    (Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Hussein A. Mohammed

    (WA School of Mines-Minerals, Energy & Chemical Engineering, Curtin University, Perth, WA 6102, Australia)

  • Mohd Aizad Sazrul Sabrudin

    (Department of Thermofluids, School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
    PROTON Holdings Sdn Bhd, HICOM Industrial Estate, Batu 3, P.O. Box 7100, Shah Alam 40918, Malaysia)

  • Kazi Md. Salim Newaz

    (Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Gholamhassan Najafi

    (Department of Biosystem Engineering, Tarbiat Modares University, Tehran 14115-111, Iran)

  • Zaher Mundher Yaseen

    (New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar 64001, Iraq)

Abstract

Flat-plate solar collectors are one of the cleanest and most efficient heating systems available. Studies on the presence of covalently functionalized graphene (Gr) suspended in distilled water as operating fluids inside an indoor flat-plate solar collector (FPSC) were experimentally and theoretically performed. These examinations were conducted under different testing conditions namely 0.025 wt.%, 0.05 wt.%, 0.075 wt.%, and 0.1 wt.%, 0.5, 1, and 1.5 kg/min, 30, 40, and 50 °C, and 500, 750, and 1000 W/m 2 . Various techniques were used to characterize the functionalized nanofluids’ stability and morphological properties namely UV/Vis spectrophotometry, EDX analysis with a Scanning Electron Microscope (SEM), zeta potential, and nanoparticle size. The results showed that the collected heat improved as the percentage of GrNPs and the fluid mass flow rates increased, although it decreased as the reduced temperature coefficient increased, whereas the maximum increase in collector efficiency at higher concentration was 13% and 12.5% compared with distilled water at 0.025 kg/s. Finally, a new correlation was developed for the base fluid and nanofluids’ thermal efficiency as a function of dropped temperature parameter and weight concentration with 2.758% and 4.232% maximum deviations.

Suggested Citation

  • Omer A. Alawi & Haslinda Mohamed Kamar & Abdul Rahman Mallah & Hussein A. Mohammed & Mohd Aizad Sazrul Sabrudin & Kazi Md. Salim Newaz & Gholamhassan Najafi & Zaher Mundher Yaseen, 2021. "Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5416-:d:553222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    2. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    3. Thomas Wüest & Lars O. Grobe & Andreas Luible, 2020. "An Innovative Façade Element with Controlled Solar-Thermal Collector and Storage," Sustainability, MDPI, vol. 12(13), pages 1-21, June.
    4. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    5. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Karami, M. & Akhavan-Bahabadi, M.A. & Delfani, S. & Raisee, M., 2015. "Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 793-801.
    7. Waldemar Kuczynski & Kazimierz Kaminski & Pawel Znaczko & Norbert Chamier-Gliszczynski & Piotr Piatkowski, 2021. "On the Correlation between the Geometrical Features and Thermal Efficiency of Flat-Plate Solar Collectors," Energies, MDPI, vol. 14(2), pages 1-15, January.
    8. Ding Ding & Wenjing He & Chunlu Liu, 2021. "Mathematical Modeling and Optimization of Vanadium-Titanium Black Ceramic Solar Collectors," Energies, MDPI, vol. 14(3), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humphrey Adun & Michael Adedeji & Ayomide Titus & Joakim James Mangai & Tonderai Ruwa, 2023. "Particle-Size Effect of Nanoparticles on the Thermal Performance of Solar Flat Plate Technology," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Grzegorz Trzmiel & Jaroslaw Jajczyk & Ewa Kardas-Cinal & Norbert Chamier-Gliszczynski & Waldemar Wozniak & Konrad Lewczuk, 2021. "The Condition of Photovoltaic Modules under Random Operation Parameters," Energies, MDPI, vol. 14(24), pages 1-18, December.
    3. Shwe Sin Han & Usman Ghafoor & Tareq Saeed & Hassan Elahi & Usman Masud & Laveet Kumar & Jeyraj Selvaraj & Muhammad Shakeel Ahmad, 2021. "Silicon Particles/Black Paint Coating for Performance Enhancement of Solar Absorbers," Energies, MDPI, vol. 14(21), pages 1-11, November.
    4. Pawel Znaczko & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Emilian Szczepanski & Paweł Gołda, 2021. "Experimental Analysis of Control Methods in Solar Water Heating Systems," Energies, MDPI, vol. 14(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    2. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    3. Ming Tao & Yanzhe Yu & Huan Zhang & Tianzhen Ye & Shijun You & Mengting Zhang, 2021. "Research on the Optimization Design of Solar Energy-Gas-Fired Boiler Systems for Decentralized Heating," Energies, MDPI, vol. 14(11), pages 1-27, May.
    4. Gianpiero Colangelo & Noemi Francesca Diamante & Marco Milanese & Giuseppe Starace & Arturo de Risi, 2021. "A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup," Energies, MDPI, vol. 14(18), pages 1-56, September.
    5. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    7. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    8. Humphrey Adun & Michael Adedeji & Ayomide Titus & Joakim James Mangai & Tonderai Ruwa, 2023. "Particle-Size Effect of Nanoparticles on the Thermal Performance of Solar Flat Plate Technology," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    9. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
    10. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    11. Ayomide Titus Ogungbemi & Humphrey Adun & Michael Adedeji & Doga Kavaz & Mustafa Dagbasi, 2022. "Does Particle Size in Nanofluid Synthesis Affect Their Performance as Heat Transfer Fluid in Flat Plate Collectors?—An Energy and Exergy Analysis," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    12. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    13. Sudhir Kumar Pathak & Tagamud Tazmeen & K. Chopra & V. V. Tyagi & Sanjeev Anand & Ammar M. Abdulateef & A. K. Pandey, 2023. "Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review," Sustainability, MDPI, vol. 15(18), pages 1-37, September.
    14. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    15. Vahidinia, F. & Khorasanizadeh, H., 2021. "Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study," Energy, Elsevier, vol. 228(C).
    16. Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
    17. Coccia, Gianluca & Tomassetti, Sebastiano & Di Nicola, Giovanni, 2021. "Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    19. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    20. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5416-:d:553222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.