IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019527.html
   My bibliography  Save this article

Evaluation of a novel polymer solar collector using numerical and experimental methods

Author

Listed:
  • Filipović, P.
  • Dović, D.
  • Horvat, I.
  • Ranilović, B.

Abstract

The presented research deals with an experimental and numerical evaluation of the thermal characteristics of a novel prototype polymer solar collector design. The experimental part comprises an alternative approach for determining the optical characteristics of polymer materials and measurements of thermal efficiency. Functional dependency of thermal efficiency on solar radiation, working fluid and air temperature is computed. In order to validate the numerical model built in the ANSYS FLUENT software package, simulations are performed on a segment of the polymer solar collector, and the findings are correlated with the experimental ones. The efficiency curve is determined for a whole collector consisting of eight analysed segments. The obtained efficiency of the proposed polymer collector design is 20% lower relative to the state-of-the-art flat plate collector during the typical summer operating regime. A parametric numerical analysis of a polymer solar collector is carried out to evaluate the influence of design and operating parameters on thermal performances and to provide design improvement guidelines. In addition, stagnation temperature measurements are conducted in accordance with EN ISO 9806:2017 when a stagnation temperature of 125.1 °C is recorded after the application of overheating protection measures.

Suggested Citation

  • Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019527
    DOI: 10.1016/j.energy.2023.128558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amiche, A. & El Hassar, S.M.K. & Larabi, A. & Khan, Z.A. & Khan, Z. & Aguilar, F.J. & Quiles, P.V., 2020. "Innovative overheating solution for solar thermal collector using a reflective surface included in the air gap," Renewable Energy, Elsevier, vol. 151(C), pages 355-365.
    2. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    3. Pugsley, Adrian & Zacharopoulos, Aggelos & Smyth, Mervyn & Mondol, Jayanta, 2019. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration," Renewable Energy, Elsevier, vol. 137(C), pages 2-9.
    4. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    5. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    6. Siqueira, D.A. & Vieira, L.G.M. & Damasceno, J.J.R., 2011. "Analysis and performance of a low-cost solar heater," Renewable Energy, Elsevier, vol. 36(9), pages 2538-2546.
    7. Martinopoulos, G. & Missirlis, D. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2010. "CFD modeling of a polymer solar collector," Renewable Energy, Elsevier, vol. 35(7), pages 1499-1508.
    8. Missirlis, D. & Martinopoulos, G. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2014. "Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations," Renewable Energy, Elsevier, vol. 68(C), pages 715-723.
    9. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    10. Chen, Xiangjie & Su, Yuehong & Reay, David & Riffat, Saffa, 2016. "Recent research developments in polymer heat exchangers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1367-1386.
    11. Carlsson, Bo & Persson, Helena & Meir, Michaela & Rekstad, John, 2014. "A total cost perspective on use of polymeric materials in solar collectors – Importance of environmental performance on suitability," Applied Energy, Elsevier, vol. 125(C), pages 10-20.
    12. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    13. Del Col, Davide & Padovan, Andrea & Bortolato, Matteo & Dai Prè, Marco & Zambolin, Enrico, 2013. "Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers," Energy, Elsevier, vol. 58(C), pages 258-269.
    14. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    2. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    3. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    4. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    6. Vahidinia, F. & Khorasanizadeh, H., 2021. "Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study," Energy, Elsevier, vol. 228(C).
    7. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    8. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    9. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    10. Pugsley, Adrian & Zacharopoulos, Aggelos & Smyth, Mervyn & Mondol, Jayanta, 2019. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration," Renewable Energy, Elsevier, vol. 137(C), pages 2-9.
    11. Selikhov, Yuriy & Klemeš, Jiří Jaromír & Kapustenko, Petro & Arsenyeva, Olga, 2022. "The study of flat plate solar collector with absorbing elements from a polymer material," Energy, Elsevier, vol. 256(C).
    12. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    13. Radwan, Ali & Abo-Zahhad, Essam M. & El-Sharkawy, Ibrahim I. & Said, Zafar & Abdelrehim, Osama & Memon, Saim & Cheng, Ping & Soliman, Ahmed Saad, 2024. "Thermal analysis of a bifacial vacuum-based solar thermal collector," Energy, Elsevier, vol. 294(C).
    14. Zheng, J. & Febrer, R. & Castro, J. & Kizildag, D. & Rigola, J., 2024. "A new high-performance flat plate solar collector. Numerical modelling and experimental validation," Applied Energy, Elsevier, vol. 355(C).
    15. Ischia Kurniawati & Yonmo Sung, 2024. "A Review of Heat Dissipation and Absorption Technologies for Enhancing Performance in Photovoltaic–Thermal Systems," Energies, MDPI, vol. 17(7), pages 1-29, April.
    16. Sudhir Kumar Pathak & Tagamud Tazmeen & K. Chopra & V. V. Tyagi & Sanjeev Anand & Ammar M. Abdulateef & A. K. Pandey, 2023. "Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review," Sustainability, MDPI, vol. 15(18), pages 1-37, September.
    17. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    18. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    19. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    20. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.