IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p293-298.html
   My bibliography  Save this article

An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors

Author

Listed:
  • Yousefi, Tooraj
  • Veysi, Farzad
  • Shojaeizadeh, Ehsan
  • Zinadini, Sirus

Abstract

In the present work the effect of Al2O3–water nanofluid, as working fluid, on the efficiency of a flat-plate solar collector was investigated experimentally. The weight fraction of nanoparticles was 0.2% and 0.4% and the particles dimension was 15 nm. Experiments were performed with and without Triton X-100 as surfactant. The mass flow rate of nanofluid varied from 1 to 3 Lit/min. The ASHRAE standard was used to calculate the efficiency. The results show that, in comparison with water as absorption medium using the nanofluids as working fluid increase the efficiency. For 0.2 wt% the increased efficiency was 28.3%. From the results it can be concluded that the surfactant causes an enhancement in heat transfer.

Suggested Citation

  • Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:293-298
    DOI: 10.1016/j.renene.2011.08.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:293-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.