IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2571-d336499.html
   My bibliography  Save this article

Assessment of Conditional Dependence Structures in Commodity Futures Markets Using Copula-GARCH Models and Fuzzy Clustering Methods

Author

Listed:
  • Małgorzata Just

    (Department of Finance and Accounting, Faculty of Economics and Social Sciences, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland)

  • Aleksandra Łuczak

    (Department of Finance and Accounting, Faculty of Economics and Social Sciences, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland)

Abstract

The dynamic development of commodity derivatives markets has been observed since the mid-2000s. It is related to the development of e-commerce, the inflow of financial investors’ capital, and the emergence of exchange-traded funds and passively managed index funds focused on commodities. These advances are accompanied by changes in dependence structure in the markets. The main purpose of this study is to assess the conditional dependence structure in various commodity futures markets (energy, metals, grains and oilseeds, soft commodities, agricultural commodities) in the period from the beginning of 2000 to the end of 2018. The specific purpose is to identify the states of the market corresponding to typical patterns of the conditional dependency structure, and to determine the time of transition from one state to another. The copula-based Multivariate Generalized Autoregressive Conditional Heteroskedasticity models were used to describe the dynamics of dependencies between the rates of return on prices of commodity futures, while the dynamic Kendall’s tau correlation coefficients were applied to measure the strength of dependencies. The daily changes in the conditional dependence structure in the markets (changes in states of the markets) were identified with the fuzzy c -means clustering method. In 2000–2018, the conditional dependence structure in commodity futures markets was not stable, as evidenced by the different states of markets identified (two states in the grains and oilseeds market, the agricultural market, the soft commodities market and the metals market, and three states in the energy market).

Suggested Citation

  • Małgorzata Just & Aleksandra Łuczak, 2020. "Assessment of Conditional Dependence Structures in Commodity Futures Markets Using Copula-GARCH Models and Fuzzy Clustering Methods," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2571-:d:336499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    2. Irwin, Scott H. & Sanders, Dwight R., 2012. "Financialization and Structural Change in Commodity Futures Markets," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(3), pages 371-396, August.
    3. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    4. Wyn Morgan & John Cotter & Kevin Dowd, 2012. "Extreme Measures of Agricultural Financial Risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 65-82, February.
    5. Maarten van Oordt & Philip Stork & Casper de Vries, 2013. "On agricultural commodities' extreme price risk," DNB Working Papers 403, Netherlands Central Bank, Research Department.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Christopher L. Gilbert, 2010. "How to Understand High Food Prices," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 398-425, June.
    9. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Bachman, Daniel & Choi, Jongmoo Jay & Jeon, Bang Nan & Kopecky, Kenneth J., 1996. "Common factors in international stock prices: Evidence from a cointegration study," International Review of Financial Analysis, Elsevier, vol. 5(1), pages 39-53.
    13. Aepli, Matthias D. & Füss, Roland & Henriksen, Tom Erik S. & Paraschiv, Florentina, 2017. "Modeling the multivariate dynamic dependence structure of commodity futures portfolios," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 66-87.
    14. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    15. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    16. Gary Gorton & K. Geert Rouwenhorst, 2004. "Facts and Fantasies about Commodity Futures," NBER Working Papers 10595, National Bureau of Economic Research, Inc.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    19. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    20. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    21. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    22. Delatte, Anne-Laure & Lopez, Claude, 2013. "Commodity and equity markets: Some stylized facts from a copula approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5346-5356.
    23. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
    24. Cooke, Bryce & Robles, Miguel, 2009. "Recent food prices movements: A time series analysis," IFPRI discussion papers 942, International Food Policy Research Institute (IFPRI).
    25. Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
    26. Satyanarayan, Sudhakar & Varangis, Panos & DEC, 1994. "An efficient frontier for international portfolios with commodity assets," Policy Research Working Paper Series 1266, The World Bank.
    27. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    28. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    29. Kofman, Paul & Koedijk, Kees & Campbell, Rachel, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    30. Jörg Mayer, 2009. "The Growing Interdependence Between Financial And Commodity Markets," UNCTAD Discussion Papers 195, United Nations Conference on Trade and Development.
    31. Gerald R. Jensen & Robert R. Johnson & Jeffrey M. Mercer, 2000. "Efficient use of commodity futures in diversified portfolios," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 20(5), pages 489-506, May.
    32. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    33. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "The conditional dependence structure between precious metals: a copula-GARCH approach," MPRA Paper 56664, University Library of Munich, Germany.
    34. Ma?gorzata Just & Agnieszka Kozera & Aleksandra ?uczak, 2019. "Conditional Dependence Structure in the Precious Metals Futures Market," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 8(1), pages 81-93, June.
    35. Yasunari Inamura & Tomonori Kimata & Takeshi Kimura & Takashi Muto, 2011. "Recent Surge in Global Commodity Prices-- Impact of financialization of commodities and globally accommodative monetary conditions --," Bank of Japan Review Series 11-E-2, Bank of Japan.
    36. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    37. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    38. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    39. Philip Abbott & Adeline Borot de Battisti, 2011. "Recent Global Food Price Shocks: Causes, Consequences and Lessons for African Governments and Donors-super- †," Journal of African Economies, Centre for the Study of African Economies, vol. 20(suppl_1), pages -62, May.
    40. Zaremba, Adam, 2015. "Inflation, Business Cycles, and Commodity Investing in Financialized Markets," Business and Economics Research Journal, Uludag University, Faculty of Economics and Administrative Sciences, vol. 6(1), pages 1-18, January.
    41. Fischer, Aurélie, 2011. "On the number of groups in clustering," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1771-1781.
    42. Liu,Jinjing, 2019. "A New Tail-Based Correlation Measure and Its Application in Global Equity Markets," Policy Research Working Paper Series 8709, The World Bank.
    43. Fernandez, Viviana, 2014. "Linear and non-linear causality between price indices and commodity prices," Resources Policy, Elsevier, vol. 41(C), pages 40-51.
    44. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    45. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    46. Conley, Dennis M. & George, Adam, 2008. "Spatial Marketing Patterns for Corn Under the Condition of Increasing Ethanol Production in the U.S," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 11(3), pages 1-18, September.
    47. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    2. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.
    3. Ding, Shusheng & Cui, Tianxiang & Zheng, Dandan & Du, Min, 2021. "The effects of commodity financialization on commodity market volatility," Resources Policy, Elsevier, vol. 73(C).
    4. Chi Zhang, 2024. "Dynamics of energy and biofuel markets in the context of rising oil prices," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 866-884, October.
    5. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    4. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    7. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    8. repec:awi:wpaper:0472 is not listed on IDEAS
    9. Zouheir Mighri, 2018. "On the Dynamic Linkages Among International Emerging Currencies," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 427-473, June.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    12. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    13. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    14. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    15. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    16. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    17. Zouheir Mighri & Faysal Mansouri, 2014. "Modeling international stock market contagion using multivariate fractionally integrated APARCH approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-25, December.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Energy Policy, Elsevier, vol. 69(C), pages 227-247.
    20. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    21. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2571-:d:336499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.