Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
- Saber Talari & Miadreza Shafie-khah & Pierluigi Siano & Vincenzo Loia & Aurelio Tommasetti & João P. S. Catalão, 2017. "A Review of Smart Cities Based on the Internet of Things Concept," Energies, MDPI, vol. 10(4), pages 1-23, March.
- Małgorzata Just & Aleksandra Łuczak, 2020. "Assessment of Conditional Dependence Structures in Commodity Futures Markets Using Copula-GARCH Models and Fuzzy Clustering Methods," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
- Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Lee, Jung Hoon & Hancock, Marguerite Gong & Hu, Mei-Chih, 2014. "Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 80-99.
- Kyunam Kim & Jung-Kyu Jung & Jae Young Choi, 2016. "Impact of the Smart City Industry on the Korean National Economy: Input-Output Analysis," Sustainability, MDPI, vol. 8(7), pages 1-19, July.
- Stefano Bracco & Federico Delfino & Paola Laiolo & Andrea Morini, 2018. "Planning & Open-Air Demonstrating Smart City Sustainable Districts," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
- Dorota Kamrowska-Załuska, 2021. "Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities," Land, MDPI, vol. 10(11), pages 1-19, November.
- Firuz Kamalov & Hana Sulieman & Sherif Moussa & Jorge Avante Reyes & Murodbek Safaraliev, 2024. "Powering Electricity Forecasting with Transfer Learning," Energies, MDPI, vol. 17(3), pages 1-13, January.
- Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
- Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
- Filipe D. Campos & Tiago C. Sousa & Ramiro S. Barbosa, 2024. "Short-Term Forecast of Photovoltaic Solar Energy Production Using LSTM," Energies, MDPI, vol. 17(11), pages 1-19, May.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Li, Kangping & Li, Zhenghui & Huang, Chunyi & Ai, Qian, 2024. "Online transfer learning-based residential demand response potential forecasting for load aggregator," Applied Energy, Elsevier, vol. 358(C).
- Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Paul Pierce & Francesca Ricciardi & Alessandro Zardini, 2017. "Smart Cities as Organizational Fields: A Framework for Mapping Sustainability-Enabling Configurations," Sustainability, MDPI, vol. 9(9), pages 1-21, August.
- Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
- Yuhong Xie & Yuzuru Ueda & Masakazu Sugiyama, 2021. "A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
- Deyslen Mariano-Hernández & Luis Hernández-Callejo & Martín Solís & Angel Zorita-Lamadrid & Oscar Duque-Pérez & Luis Gonzalez-Morales & Felix Santos García & Alvaro Jaramillo-Duque & Adalberto Ospino-, 2022. "Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
- Ayyoob Sharifi & Zaheer Allam & Bakhtiar Feizizadeh & Hessam Ghamari, 2021. "Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
- Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
- Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
- F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
- Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019.
"The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field,"
Sustainability, MDPI, vol. 11(2), pages 1-19, January.
- Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Post-Print halshs-02292337, HAL.
- Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
- William Villegas-Ch & Xavier Palacios-Pacheco & Sergio Luján-Mora, 2019. "Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus," Sustainability, MDPI, vol. 11(10), pages 1-28, May.
- Jun, Wang Ki & Lee, Min-Kyu & Choi, Jae Young, 2018. "Impact of the smart port industry on the Korean national economy using input-output analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 480-493.
- Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
- Federico Delfino & Paola Laiolo & Federico Delfino, 2019. "Living Labs and Partnerships for Progress-How Universities can Drive the Process towards the Sustainable City," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 71-73, April.
More about this item
Keywords
smart city; monthly electric load forecasting; mid-term load forecasting; transfer learning; Pearson correlation coefficient; deep neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6364-:d:395837. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.