IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p1771-1781.html
   My bibliography  Save this article

On the number of groups in clustering

Author

Listed:
  • Fischer, Aurélie

Abstract

Clustering is the problem of partitioning data into a finite number k of homogeneous and separate groups, called clusters. A good choice of k is essential for building meaningful clusters. In this paper, this task is addressed from the point of view of model selection via penalization. We design an appropriate penalty shape and derive an associated oracle-type inequality. The method is illustrated on both simulated and real-life data sets.

Suggested Citation

  • Fischer, Aurélie, 2011. "On the number of groups in clustering," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1771-1781.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1771-1781
    DOI: 10.1016/j.spl.2011.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardy, Andre, 1996. "On the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 83-96, November.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    4. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Just & Aleksandra Łuczak, 2020. "Assessment of Conditional Dependence Structures in Commodity Futures Markets Using Copula-GARCH Models and Fuzzy Clustering Methods," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    2. Chakraborty, Saptarshi & Das, Swagatam, 2018. "Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian means algorithm," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 148-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    3. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    4. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
    6. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    7. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    8. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    9. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    10. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    11. Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
    12. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
    13. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    14. Fujita, André & Takahashi, Daniel Y. & Patriota, Alexandre G., 2014. "A non-parametric method to estimate the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 27-39.
    15. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    16. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    17. Kondo, Yumi & Salibian-Barrera, Matias & Zamar, Ruben, 2016. "RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i05).
    18. Öttl, Gerald & Böck, Philipp & Werpup, Nadja & Schwarze, Malte, 2013. "Derivation of representative air traffic peaks as standard input for airport related simulation," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 31-39.
    19. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    20. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1771-1781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.