IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2451-d334986.html
   My bibliography  Save this article

Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM

Author

Listed:
  • Hualing Lin

    (The School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Qiubi Sun

    (The School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Sheng-Qun Chen

    (The School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

Abstract

In international trade, it is common practice for multinational companies to use financial market instruments, such as financial derivatives and foreign currency debt, to hedge exchange rate risks. Making accurate predictions and decisions on the direction and magnitude of exchange rate movements is a more direct way to reduce exchange rate risks. However, the traditional time series model has many limitations in forecasting exchange rate, which is nonlinear and nonstationary. In this paper, we propose a new hybrid model of complete ensemble empirical mode decomposition (CEEMDAN) based multilayer long short-term memory (MLSTM) networks. It overcomes the shortcomings of the classic methods. CEEMDAN not only solves the mode mixing problem of empirical mode decomposition (EMD), but also solves the residue noise problem which is included in the reconstructed data of ensemble empirical mode decomposition (EEMD) with less computation cost. MLSTM can learning more complex dependences from exchange rate data than the classic model of time series. A lot of experiments have been conducted to measure the performance of the proposed approach among the exchange rates of British pound, the Australian dollar, and the US dollar. In order to get an objective evaluation, we compared the proposed method with several standard approaches or other hybrid models. The experimental results show that the CEEMDAN-based MLSTM (CEEMDAN–MLSTM) goes on better than some state-of-the-art models in terms of several evaluations.

Suggested Citation

  • Hualing Lin & Qiubi Sun & Sheng-Qun Chen, 2020. "Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2451-:d:334986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Korhonen, Antti, 2001. "Strategic financial management in a multinational financial conglomerate: A multiple goal stochastic programming approach," European Journal of Operational Research, Elsevier, vol. 128(2), pages 418-434, January.
    2. ITO Takatoshi & KOIBUCHI Satoshi & SATO Kiyotaka & SHIMIZU Junko, 2013. "Exchange Rate Exposure and Exchange Rate Risk Management: The case of Japanese exporting firms," Discussion papers 13025, Research Institute of Economy, Trade and Industry (RIETI).
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    5. Davidson, James & Li, Xiaoyu, 2016. "Strict stationarity, persistence and volatility forecasting in ARCH(∞) processes," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 534-547.
    6. Michael G. Papaioannou, 2006. "Exchange Rate Risk Measurement and Management: Issues and Approaches for Firms," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 4(2), pages 129-146.
    7. Zhang, Ningning & Lin, Aijing & Shang, Pengjian, 2017. "Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 161-173.
    8. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
    9. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    10. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihki Rubio & Keyla Alba, 2022. "Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    2. Anton Kuzmin, 2022. "Mathematical Exchange Rates Modeling: Equilibrium and Nonequilibrium Dynamics," Mathematics, MDPI, vol. 10(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    2. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    3. Kaehler, Jürgen, 1991. "Modelling and forecasting exchange-rate volatility with ARCH-type models," ZEW Discussion Papers 91-02, ZEW - Leibniz Centre for European Economic Research.
    4. Blake LeBaron, "undated". "Technical Trading Rules and Regime Shifts in Foreign Exchange," Working papers _007, University of Wisconsin - Madison.
    5. Barry A. Goss & S. Gulay Avsar, 2016. "Can Economists Forecast Exchange Rates? The Debate Re-Visited: The Case of the USD/GBP Market," Australian Economic Papers, Wiley Blackwell, vol. 55(1), pages 14-28, March.
    6. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
    7. Tamal Datta Chaudhuri & Indranil Ghosh, 2016. "Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework," Papers 1607.02093, arXiv.org.
    8. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    9. López Noria Gabriela & Bush Georgia, 2019. "Uncertainty and Exchange Rate Volatility: the Case of Mexico," Working Papers 2019-12, Banco de México.
    10. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    11. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    12. Ioannis N. Kallianiotis & Karen Bianchi & Augustine C. Arize & John Malindretos & Ikechukwu Ndu, 2020. "Financial Assets, Expected Return and Risk, Speculation, Uncertainty, and Exchange Rate Determination," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 3-30.
    13. Bauer, Christian & De Grauwe, Paul & Reitz, Stefan, 2009. "Exchange rate dynamics in a target zone--A heterogeneous expectations approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 329-344, February.
    14. Dr. Ioannis N. Kallianiotis & Dr. Dean Frear, 2006. "Assets Return and Risk and Exchange Rate Trends: An Ex Post Analysis," European Research Studies Journal, European Research Studies Journal, vol. 0(3-4), pages 15-34.
    15. Ahmad Zubaidi Baharumshah & Liew Khim Sen & Lim Kian Ping, 2003. "Exchange Rates Forecasting Model: An Alternative Estimation Procedure," International Finance 0307005, University Library of Munich, Germany.
    16. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    17. Haruna, Issahaku & Abdulai, Hamdeeya & Kriesie, Maryiam & Harvey, Simon K., 2015. "Exchange rate forecasting in the West African Monetary Zone: a comparison of forecast performance of time series models," MPRA Paper 97009, University Library of Munich, Germany, revised 26 Jul 2015.
    18. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    19. Kondo, Koji, 1997. "Statistical analysis of foreign exchange rates: application of cointegration model and regime-switching stochastic volatility model," ISU General Staff Papers 1997010108000012997, Iowa State University, Department of Economics.
    20. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2451-:d:334986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.