Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gunho Jung & Sun-Yong Choi & Benjamin Miranda Tabak, 2021. "Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques," Complexity, Hindawi, vol. 2021, pages 1-16, March.
- Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Hualing Lin & Qiubi Sun & Sheng-Qun Chen, 2020. "Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
- Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Lihki Rubio & Alejandro J. Gutiérrez-Rodríguez & Manuel G. Forero, 2021. "EBITDA Index Prediction Using Exponential Smoothing and ARIMA Model," Mathematics, MDPI, vol. 9(20), pages 1-14, October.
- Moreno, Julián, 2009. "Hydraulic plant generation forecasting in Colombian power market using ANFIS," Energy Economics, Elsevier, vol. 31(3), pages 450-455, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- María Antonia Truyols-Pont & Amelia Bilbao-Terol & Mar Arenas-Parra, 2024. "Machine Learning for Sustainable Portfolio Optimization Applied to a Water Market," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
- Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
- Tiago E. Pratas & Filipe R. Ramos & Lihki Rubio, 2023. "Forecasting bitcoin volatility: exploring the potential of deep learning," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 285-305, June.
- Erjiang E & Ming Yu & Xin Tian & Ye Tao, 2022. "Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
- Nurhuda Nizar & Ahmad Danial Zainudin & Ali Albada & Chua Mei Shan, 2024. "Forecasting Short-Term FTSE Bursa Malaysia Using WEKA," Information Management and Business Review, AMH International, vol. 16(2), pages 104-114.
- Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Maya Malinda & Jo-Hui Chen, 2022. "The forecasting of consumer exchange-traded funds (ETFs) via grey relational analysis (GRA) and artificial neural network (ANN)," Empirical Economics, Springer, vol. 62(2), pages 779-823, February.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
- Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
- Ruiz-Aguilar, J.J. & Turias, I.J. & Jiménez-Come, M.J., 2014. "Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 1-13.
- Moreno, David & Olmeda, Ignacio, 2007. "Is the predictability of emerging and developed stock markets really exploitable?," European Journal of Operational Research, Elsevier, vol. 182(1), pages 436-454, October.
- Hasnain Iftikhar & Nadeela Bibi & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan," Energies, MDPI, vol. 16(6), pages 1-17, March.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, November.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
IREA Working Papers
201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
- Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
- Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
More about this item
Keywords
hybrid model; ARIMA; support vector regression (SVR); forecasting; time series analysis; daily returns; cumulative returns;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2181-:d:845473. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.