IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1552-d322413.html
   My bibliography  Save this article

An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment

Author

Listed:
  • Shuaiyang Jiao

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Shengrui Zhang

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Bei Zhou

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Zixuan Zhang

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Liyuan Xue

    (School of Civil and Transportation Engineering, Henan University of Urban Construction, Pingdingshan 467036, China)

Abstract

In intelligent transportation systems, vehicles can obtain more information, and the interactivity between vehicles can be improved. Therefore, it is necessary to study car-following behavior during the introduction of intelligent traffic information technology. To study the impacts of drivers’ characteristics on the dynamic characteristics of car-following behavior in a vehicle-to-vehicle (V2V) communication environment, we first analyzed the relationship between drivers’ characteristics and the following car’s optimal velocity using vehicle trajectory data via the grey relational analysis method and then presented a new optimal velocity function (OVF). The boundary conditions of the new OVF were analyzed theoretically, and the results showed that the new OVF can better describe drivers’ characteristics than the traditional OVF. Subsequently, we proposed an extended car-following model by combining V2V communication based on the new OVF and previous car-following models. Finally, numerical simulations were carried out to explore the effect of drivers’ characteristics on car-following behavior and fuel economy of vehicles, and the results indicated that the proposed model can improve vehicles’ mobility, safety, fuel consumption, and emissions in different traffic scenarios. In conclusion, the performance of traffic flow was improved by taking drivers’ characteristics into account under the V2V communication situation for car-following theory.

Suggested Citation

  • Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1552-:d:322413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    2. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    3. X. Zhao & Z. Gao, 2005. "A new car-following model: full velocity and acceleration difference model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(1), pages 145-150, September.
    4. Klawtanong, Manit & Limkumnerd, Surachate, 2020. "Dissipation of traffic congestion using autonomous-based car-following model with modified optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Zhang, Jian & Tang, Tie-Qiao & Yu, Shao-Wei, 2018. "An improved car-following model accounting for the preceding car’s taillight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1831-1837.
    6. Li, Xiangchen & Luo, Xia & He, Mengchen & Chen, Siwei, 2018. "An improved car-following model considering the influence of space gap to the response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 536-545.
    7. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    8. Guo, Lantian & Zhao, Xiangmo & Yu, Shaowei & Li, Xiuhai & Shi, Zhongke, 2017. "An improved car-following model with multiple preceding cars’ velocity fluctuation feedback," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 436-444.
    9. Zhang, Geng & Zhao, Min & Sun, Di-Hua & Liu, Wei-Ning & Li, Hua-Min, 2016. "Stabilization effect of multiple drivers’ desired velocities in car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 532-540.
    10. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    11. Kuang, Hua & Xu, Zhi-Peng & Li, Xing-Li & Lo, Siu-Ming, 2017. "An extended car-following model accounting for the average headway effect in intelligent transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 778-787.
    12. Peng, Guanghan & Yang, Shuhong & Xia, Dongxue & Li, Xiaoqin, 2019. "Delayed-feedback control in a car-following model with the combination of V2V communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    13. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    14. Ci, Yusheng & Wu, Lina & Zhao, Jiafa & Sun, Yichen & Zhang, Guohui, 2019. "V2I-based car-following modeling and simulation of signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 672-679.
    15. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    16. Liao, Peng & Tang, Tie-Qiao & Wang, Tao & Zhang, Jian, 2019. "A car-following model accounting for the driving habits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 108-118.
    17. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    19. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    20. Yu, Shaowei & Zhao, Xiangmo & Xu, Zhigang & Shi, Zhongke, 2016. "An improved car-following model considering the immediately ahead car’s velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 446-455.
    21. Kayvan Aghabayk & Majid Sarvi & William Young, 2015. "A State-of-the-Art Review of Car-Following Models with Particular Considerations of Heavy Vehicles," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 82-105, January.
    22. Cao, Bao-gui, 2020. "A car-following dynamic model with headway memory and evolution trend," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    23. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    24. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    25. Gong, Huaxin & Liu, Hongchao & Wang, Bing-Hong, 2008. "An asymmetric full velocity difference car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2595-2602.
    26. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    27. Peng, Guanghan & Kuang, Hua & Zhao, Hongzhuan & Qing, Li, 2019. "Nonlinear analysis of a new lattice hydrodynamic model with the consideration of honk effect on flux for two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 93-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    2. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Jiao, Shuaiyang & Zhang, Shengrui & Zhou, Bei & Zhang, Lei & Xue, Liyuan, 2021. "Dynamic performance and safety analysis of car-following models considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    4. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    6. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    7. Junyan Han & Xiaoyuan Wang & Huili Shi & Bin Wang & Gang Wang & Longfei Chen & Quanzheng Wang, 2022. "Research on the Impacts of Vehicle Type on Car-Following Behavior, Fuel Consumption and Exhaust Emission in the V2X Environment," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Li, Xiangchen & Luo, Xia & He, Mengchen & Chen, Siwei, 2018. "An improved car-following model considering the influence of space gap to the response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 536-545.
    3. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    5. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    6. Jiao, Shuaiyang & Zhang, Shengrui & Zhou, Bei & Zhang, Lei & Xue, Liyuan, 2021. "Dynamic performance and safety analysis of car-following models considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    8. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    9. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    10. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    11. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    12. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    13. Jin, Zhizhan & Li, Zhipeng & Cheng, Rongjun & Ge, Hongxia, 2018. "Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 278-288.
    14. Jin, Zhizhan & Yang, Zaili & Ge, Hongxia, 2018. "Energy consumption investigation for a new car-following model considering driver’s memory and average speed of the vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1038-1049.
    15. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    16. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    17. Zhao, Jing & Li, Peng, 2017. "An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 178-187.
    18. Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    19. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1552-:d:322413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.