IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i11p2595-2602.html
   My bibliography  Save this article

An asymmetric full velocity difference car-following model

Author

Listed:
  • Gong, Huaxin
  • Liu, Hongchao
  • Wang, Bing-Hong

Abstract

This paper presents a car-following model that considers the asymmetric characteristic of the velocity differences of the vehicles in a traffic stream. The problems of the prevalent general force (GF) model and the full velocity difference (FVD) model were solved. Furthermore, the optimal velocity (OV) model, the GF model, and the FVD model are proved to be the special cases of the proposed asymmetric full velocity difference (AFVD) model. The mathematical model is presented, followed by simulation analysis which demonstrates the properties of the AFVD model.

Suggested Citation

  • Gong, Huaxin & Liu, Hongchao & Wang, Bing-Hong, 2008. "An asymmetric full velocity difference car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2595-2602.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:11:p:2595-2602
    DOI: 10.1016/j.physa.2008.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108000253
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Qi & Yang, Nan & Fu, Rui & Yu, Shaowei & Shi, Zhongke, 2018. "Impacts analysis of car following models considering variable vehicular gap policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 338-355.
    2. Shi, Kunsong & Wu, Yuankai & Shi, Haotian & Zhou, Yang & Ran, Bin, 2022. "An integrated car-following and lane changing vehicle trajectory prediction algorithm based on a deep neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    3. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    4. Li, Xiangchen & Luo, Xia & He, Mengchen & Chen, Siwei, 2018. "An improved car-following model considering the influence of space gap to the response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 536-545.
    5. Pan, Weixiu & Zhang, Jing & Tian, Junfang & Cui, Fengying & Wang, Tao, 2023. "Analysis of car–following behaviors based on data–driven and theory–driven car–following models: Heterogeneity and asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    6. Xu, Xihua & Pang, John & Monterola, Christopher, 2015. "Asymmetric optimal-velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 565-571.
    7. Kang, Chengjun & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Zhang, Futao, 2024. "Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    8. Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    9. Wei, Dali & Liu, Hongchao, 2013. "Analysis of asymmetric driving behavior using a self-learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 1-14.
    10. Wen Huan Ai & Ming Ming Wang & Da Wei Liu, 2023. "Analysis of macroscopic traffic flow model considering throttle dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:11:p:2595-2602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.