IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v639y2024ics0378437124001791.html
   My bibliography  Save this article

Car-following model considering jerk-constrained acceleration stochastic process for emission estimation

Author

Listed:
  • Meng, Dongli
  • Song, Guohua
  • Huang, Jianchang
  • Lu, Hongyu
  • Wu, Yizheng
  • Yu, Lei

Abstract

The continuity of acceleration changes is often overlooked by existing car-following models, leading to a limitation in capturing realistic driving dynamics for emission estimation, which are essential for the application in microscopic traffic evaluations. This paper investigated and modeled the jerk-constrained acceleration stochastic process using the Markov model. A new car-following model considering the acceleration stochastic process was proposed, which incorporated two modes of unconscious following and active acceleration approaching. Additionally, a bi-objective model calibration framework was introduced to balance the trade-off between traffic-related performance and emission estimation performance. Numerical simulation was conducted to compare the performance of the new model with the conventional Wiedemann model. Results demonstrated that the proposed model provides more realistic vehicle dynamics and accurate emission estimations. Specifically, compared to the Wiedemann model, the new model reduced the root-mean-square error (RMSE) of spacing headway by 0.73 m and the RMSE of vehicle-specific power (VSP) distribution by 11.57%.

Suggested Citation

  • Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
  • Handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001791
    DOI: 10.1016/j.physa.2024.129670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001791
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    2. Fernandes, P. & Tomás, R. & Ferreira, E. & Bahmankhah, B. & Coelho, M.C., 2021. "Driving aggressiveness in hybrid electric vehicles: Assessing the impact of driving volatility on emission rates," Applied Energy, Elsevier, vol. 284(C).
    3. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    4. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    5. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    6. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    7. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    2. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    3. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    4. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    5. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    7. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    8. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    9. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    10. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    11. Jin, Cheng-Jie & Yang, Wenzhang & Jiang, Rui & Liao, Peng & Zheng, Shiteng & Wang, Hao, 2023. "Vessel-following dynamics: Experiment and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.
    13. Siqueira, Adriano F. & Peixoto, Carlos J.T. & Wu, Chen & Qian, Wei-Liang, 2016. "Effect of stochastic transition in the fundamental diagram of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 1-13.
    14. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    15. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Yu Wang & Xiaopeng Li & Junfang Tian & Rui Jiang, 2020. "Stability Analysis of Stochastic Linear Car-Following Models," Transportation Science, INFORMS, vol. 54(1), pages 274-297, January.
    17. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    18. Wen, Jianghui & Hong, Lijiang & Dai, Min & Xiao, Xinping & Wu, Chaozhong, 2023. "A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    19. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Tang, Tie-Qiao & Zhang, Jian & Chen, Liang & Shang, Hua-Yan, 2017. "Analysis of vehicle’s safety envelope under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 127-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.