IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v539y2020ics0378437119316474.html
   My bibliography  Save this article

A car-following dynamic model with headway memory and evolution trend

Author

Listed:
  • Cao, Bao-gui

Abstract

Integrating headway evolution information into the existing memory car-following model, a new car-following dynamic model with headway memory and evolution trend is proposed in this paper. The objective of this research is to investigate the impacts and improvements of a combined consideration of headway memory and evolution trend on micro driving behaviors and the stability of traffic flow. The neutral stability condition of the proposed model is obtained by means of linear stability theory. The model is investigated in detail by numerical comparison under two typical cases, where Case I is the starting process and Case II is the development process of a small perturbation. Numerical results show that driver’s headway memory and evolution trend have opposite impacts on the stability of traffic flow, which means the extended car-following model can compensate for unavoidable sensory memory delay for the reliability of headway perception and effectively suppress traffic congestion since the headway evolution trend effect is taken into account.

Suggested Citation

  • Cao, Bao-gui, 2020. "A car-following dynamic model with headway memory and evolution trend," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
  • Handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316474
    DOI: 10.1016/j.physa.2019.122903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316474
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Jiao, Shuaiyang & Zhang, Shengrui & Zhou, Bei & Zhang, Lei & Xue, Liyuan, 2021. "Dynamic performance and safety analysis of car-following models considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    6. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    8. Ma, Guangyi & Ma, Minghui & Liang, Shidong & Wang, Yansong & Guo, Hui, 2021. "Nonlinear analysis of the car-following model considering headway changes with memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    9. Zhiyong Zhang & Wu Tang & Wenming Feng & Zhen Liu & Caixia Huang, 2024. "An Extended Car-Following Model Considering Lateral Gap and Optimal Velocity of the Preceding Vehicle," Sustainability, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.