IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029888.html
   My bibliography  Save this article

Modeling impacts of different data transmission delays on traffic jam, fuel consumption and emissions on curved road

Author

Listed:
  • Ma, Guangyi
  • Li, Keping

Abstract

Under the intelligent transportation system, the use of autonomous vehicles can ease traffic jam, and reduce fuel consumption and emissions. The effects of different data transmission delays on traffic jam, fuel consumption and emissions on curved road are studied by constructing an extended multi-vehicle curve following model considering different data transmission delays to describe the curve following behavior of multiple autonomous vehicles. Subsequently, the stability of the novel model is derived by using linear stability theory. And then, numerical simulation is executed. Finally, some influence factors including curvature radius, backward looking effect, position signal time delay, and velocity signal time delay are discussed. Numerical simulation results show that reducing curvature radius and increasing backward looking effect can reduce fuel consumption and emissions, decrease density fluctuations, thereby gradually eliminating traffic jam. In addition, as difference between position signal time delay and velocity signal time delay decreases, the improvement degree in fuel consumption and emissions is limited. Meanwhile, it also makes density fluctuation decreases gradually, enhances traffic stream stability, and alleviates traffic jam, which is keeping with theoretical analysis. The finding has theoretical implications for designing autonomous vehicle control algorithms to reduce the negative effects of data transmission delays in traffic flow.

Suggested Citation

  • Ma, Guangyi & Li, Keping, 2024. "Modeling impacts of different data transmission delays on traffic jam, fuel consumption and emissions on curved road," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029888
    DOI: 10.1016/j.energy.2024.133213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    2. Ge, H.X. & Cheng, R.J. & Li, Z.P., 2008. "Two velocity difference model for a car following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5239-5245.
    3. Liu, Lan & Zhu, Liling & Yang, Da, 2016. "Modeling and simulation of the car-truck heterogeneous traffic flow based on a nonlinear car-following model," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 706-717.
    4. Cheng-Ju Song & Hong-Fei Jia, 2022. "Car-Following Model Optimization and Simulation Based on Cooperative Adaptive Cruise Control," Sustainability, MDPI, vol. 14(21), pages 1-12, October.
    5. Wörz, Sascha & Bernhardt, Heinz, 2017. "A novel method for optimal fuel consumption estimation and planning for transportation systems," Energy, Elsevier, vol. 120(C), pages 565-572.
    6. Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    7. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    8. Yan-Tao Zhang & Yu-Zhang Chen & Cong-Ling Shi & Mao-Bin Hu, 2023. "Impact of vehicle platoon on energy and emission in mixed traffic environment," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 34(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    2. Junyan Han & Xiaoyuan Wang & Huili Shi & Bin Wang & Gang Wang & Longfei Chen & Quanzheng Wang, 2022. "Research on the Impacts of Vehicle Type on Car-Following Behavior, Fuel Consumption and Exhaust Emission in the V2X Environment," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    3. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    5. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    6. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    7. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    8. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    9. Salvini, Pericle & Kunze, Lars & Jirotka, Marina, 2024. "On self-driving cars and its (broken?) promises. A case study analysis of the German Act on Autonomous Driving," Technology in Society, Elsevier, vol. 78(C).
    10. Hou, Lin & Pei, Yulong & He, Qingling, 2023. "A car following model in the context of heterogeneous traffic flow involving multilane following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    11. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    13. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2024. "PACC: A platoon-based adaptive cruise control strategy based on leader-following information topology to mitigate traffic oscillations under CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    15. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    16. Huailei Cheng & Yuhong Wang & Dan Chong & Chao Xia & Lijun Sun & Jenny Liu & Kun Gao & Ruikang Yang & Tian Jin, 2023. "Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    18. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    19. He, Yongming & Kang, Jia & Pei, Yulong & Ran, Bin & Song, Yuting, 2021. "Research on influencing factors of fuel consumption on superhighway based on DEMATEL-ISM model," Energy Policy, Elsevier, vol. 158(C).
    20. Kwangho Ko & Tongwon Lee & Seunghyun Jeong, 2021. "A Deep Learning Method for Monitoring Vehicle Energy Consumption with GPS Data," Sustainability, MDPI, vol. 13(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.