IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1265-d318636.html
   My bibliography  Save this article

Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization

Author

Listed:
  • Le Chi Kien

    (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

  • Thanh Long Duong

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Van-Duc Phan

    (Faculty of Automobile Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam)

  • Thang Trung Nguyen

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

Abstract

In the paper, a proposed particle swarm optimization (PPSO) is implemented for dealing with an economic load dispatch (ELD) problem considering the competitive electric market. The main task of the problem is to determine optimal power generation and optimal reserve generation of available thermal generation units so that total profit of all the units is maximized. In addition, constraints, such as generation limit and reserve limit of each unit, power demand and reserve demand, must be exactly satisfied. PPSO is an improved version of conventional particle swarm optimization (PSO) by combining pseudo gradient method, constriction factor and a newly proposed position update method. On the other hand, in order to support PPSO to reach good results for the considered problem, a new constraint handling method (NCHM) is also proposed for determining maximum reserve generation and correcting reserve generation. Three test systems with 3, 10 and 20 units are employed to evaluate the real performance of PPSO. In addition to the comparisons with previous methods, salp swarm optimization (SSA), modified differential evolution (MDE) and eight other PSO methods are also implemented for comparisons. Through the result comparisons, two main contributions of the study are as follows: (1) NCHM is very effective for PSO methods to reach a high success rate and higher solution quality, (2) PPSO is more effective than other methods. Consequently, NCHM and PPSO are the useful combination for the considered problem.

Suggested Citation

  • Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1265-:d:318636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thang Trung Nguyen & Nguyen Vu Quynh & Le Van Dai, 2018. "Improved Firefly Algorithm: A Novel Method for Optimal Operation of Thermal Generating Units," Complexity, Hindawi, vol. 2018, pages 1-23, July.
    2. Hermans, Mathias & Bruninx, Kenneth & Vitiello, Silvia & Spisto, Amanda & Delarue, Erik, 2018. "Analysis on the interaction between short-term operating reserves and adequacy," Energy Policy, Elsevier, vol. 121(C), pages 112-123.
    3. Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
    4. Tan, Chin-Woo & Varaiya, Pravin, 1993. "Interruptible electric power service contracts," Journal of Economic Dynamics and Control, Elsevier, vol. 17(3), pages 495-517, May.
    5. Xiong, Guojiang & Shi, Dongyuan, 2018. "Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 157(C), pages 424-435.
    6. Le Chi Kien & Thang Trung Nguyen & Chiem Trong Hien & Minh Quan Duong, 2019. "A Novel Social Spider Optimization Algorithm for Large-Scale Economic Load Dispatch Problem," Energies, MDPI, vol. 12(6), pages 1-26, March.
    7. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    8. Fazel Mohammadi & Gholam-Abbas Nazri & Mehrdad Saif, 2019. "A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    9. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    10. Ly Huu Pham & Minh Quan Duong & Van-Duc Phan & Thang Trung Nguyen & Hoang-Nam Nguyen, 2019. "A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem," Energies, MDPI, vol. 12(9), pages 1-25, May.
    11. Roy, Sanjoy, 2018. "The maximum likelihood optima for an economic load dispatch in presence of demand and generation variability," Energy, Elsevier, vol. 147(C), pages 915-923.
    12. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    13. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jon Martinez-Rico & Ekaitz Zulueta & Unai Fernandez-Gamiz & Ismael Ruiz de Argandoña & Mikel Armendia, 2020. "Forecast Error Sensitivity Analysis for Bidding in Electricity Markets with a Hybrid Renewable Plant Using a Battery Energy Storage System," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    2. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2020. "An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
    2. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    4. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    5. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    6. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    7. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    8. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    9. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    10. Srikant Misra & P. K. Panigrahi & Bishwajit Dey, 2023. "An efficient way to schedule dispersed generators for a microgrid system's economical operation under various power market conditions and grid involvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1799-1809, October.
    11. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    12. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    13. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    14. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    15. Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2019. "The Conducted Emission Attenuation of Micro-Inverters for Nanogrid Systems," Sustainability, MDPI, vol. 12(1), pages 1-31, December.
    16. Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
    17. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    18. Rajakumar, R. & Sekaran, Kaushik & Hsu, Ching-Hsien & Kadry, Seifedine, 2021. "Accelerated grey wolf optimization for global optimization problems," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    20. Mengqi Zhao & Xiaoling Wang & Jia Yu & Lei Bi & Yao Xiao & Jun Zhang, 2020. "Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm," Energies, MDPI, vol. 13(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1265-:d:318636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.