IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6874-d660526.html
   My bibliography  Save this article

Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study

Author

Listed:
  • Georg Göhler

    (Fraunhofer IAO, Fraunhofer Institute for Industrial Engineering, 70569 Stuttgart, Germany)

  • Anna-Lena Klingler

    (Fraunhofer IAO, Fraunhofer Institute for Industrial Engineering, 70569 Stuttgart, Germany)

  • Florian Klausmann

    (Fraunhofer IAO, Fraunhofer Institute for Industrial Engineering, 70569 Stuttgart, Germany)

  • Dieter Spath

    (Institute of Human Factors and Technology Management (IAT), University of Stuttgart, 70569 Stuttgart, Germany)

Abstract

Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation.

Suggested Citation

  • Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6874-:d:660526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    3. Andor, Mark Andreas & Frondel, Manuel & Sendler, Sophie, 2015. "Photovoltaik-Anlagen in Deutschland: Ausgestattet mit der Lizenz zum Gelddrucken?," RWI Materialien 94, RWI - Leibniz-Institut für Wirtschaftsforschung.
    4. Peter Grosche & Colin Vance, 2009. "Willingness to Pay for Energy Conservation and Free-Ridership on Subsidization: Evidence from Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 135-154.
    5. Fazel Mohammadi & Gholam-Abbas Nazri & Mehrdad Saif, 2019. "A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    6. Klingler, Anna-Lena, 2018. "The effect of electric vehicles and heat pumps on the market potential of PV + battery systems," Energy, Elsevier, vol. 161(C), pages 1064-1073.
    7. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    8. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    9. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    10. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    11. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    12. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    13. Munoz, L.A. Hurtado & Huijben, J.C.C.M. & Verhees, B. & Verbong, G.P.J., 2014. "The power of grid parity: A discursive approach," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 179-190.
    14. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell, 2018. "Why homeowners strive for energy self-supply and how policy makers can influence them," Energy Policy, Elsevier, vol. 117(C), pages 423-433.
    15. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Klausmann & Anna-Lena Klingler, 2023. "Adaptive Control Strategy for Stationary Electric Battery Storage Systems with Reliable Peak Load Limitation at Maximum Self-Consumption of Locally Generated Energy," Energies, MDPI, vol. 16(9), pages 1-19, May.
    2. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klingler, Anna-Lena, 2018. "The effect of electric vehicles and heat pumps on the market potential of PV + battery systems," Energy, Elsevier, vol. 161(C), pages 1064-1073.
    2. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    5. Florian Klausmann & Anna-Lena Klingler, 2023. "Adaptive Control Strategy for Stationary Electric Battery Storage Systems with Reliable Peak Load Limitation at Maximum Self-Consumption of Locally Generated Energy," Energies, MDPI, vol. 16(9), pages 1-19, May.
    6. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    7. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    9. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    10. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    11. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    12. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    13. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    14. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    15. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    16. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    17. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    18. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    19. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Vulic, Natasa & Rüdisüli, Martin & Orehounig, Kristina, 2023. "Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6874-:d:660526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.