IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1796-d230317.html
   My bibliography  Save this article

A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem

Author

Listed:
  • Ly Huu Pham

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Minh Quan Duong

    (Department of Electrical Engineering, The University of Da Nang, University of Science and Technology, Da Nang city 550000, Vietnam)

  • Van-Duc Phan

    (Center of Excellence for Automation and Precision Mechanical Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam)

  • Thang Trung Nguyen

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Hoang-Nam Nguyen

    (Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

Abstract

This paper proposes applications of a modified stochastic fractal search algorithm (MSFS) to solve the economic load dispatch problem (ELD) in which valve-point effects, prohibited operating zones, power losses in all conductors, multi-fuel sources and other constraints of power system are taken into consideration. The proposed method is first developed in the study by performing two modifications on two procedures of new solution generation from conventional stochastic fractal search (SFS). The first modification is used to change the strategy of producing new solutions of the first and the second update procedures while the second one is to newly update the worst solutions in the first update process and the best solutions in the second update process. These modifications have major influence on the solution search performance of the proposed method. All improvements of the proposed method can be illustrated by solving and analyzing results from various test systems with different system scales including 3-unit, 6-unit, 10-unit, and 20-unit systems. Comparison of results obtained by MSFS, SFS, and other existing methods indicates that the proposed MSFS method is more effective and robust than compared methods in terms of solution quality, high-quality solution search stability and convergence process. Consequently, the proposed method should be used as a very favorable optimization method for the ELD problem and it should be tried for other optimization problems in electrical engineering.

Suggested Citation

  • Ly Huu Pham & Minh Quan Duong & Van-Duc Phan & Thang Trung Nguyen & Hoang-Nam Nguyen, 2019. "A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem," Energies, MDPI, vol. 12(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1796-:d:230317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qun Niu & Zhuo Zhou & Hong-Yun Zhang & Jing Deng, 2012. "An Improved Quantum-Behaved Particle Swarm Optimization Method for Economic Dispatch Problems with Multiple Fuel Options and Valve-Points Effects," Energies, MDPI, vol. 5(9), pages 1-19, September.
    2. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    3. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    4. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    6. Vo, Dieu Ngoc & Ongsakul, Weerakorn, 2012. "Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network," Applied Energy, Elsevier, vol. 91(1), pages 281-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    2. Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
    3. Juseung Choi & Hoyong Eom & Seung-Mook Baek, 2022. "A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    3. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    4. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    5. Meng, Anbo & Zeng, Cong & Xu, Xuancong & Ding, Weifeng & Liu, Shiyun & Chen, De & Yin, Hao, 2022. "Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system," Energy, Elsevier, vol. 246(C).
    6. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    7. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    8. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    9. Rajakumar Ramalingam & Dinesh Karunanidy & Sultan S. Alshamrani & Mamoon Rashid & Swamidoss Mathumohan & Ankur Dumka, 2022. "Oppositional Pigeon-Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch Problem in Power Systems," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    10. Le Chi Kien & Thang Trung Nguyen & Chiem Trong Hien & Minh Quan Duong, 2019. "A Novel Social Spider Optimization Algorithm for Large-Scale Economic Load Dispatch Problem," Energies, MDPI, vol. 12(6), pages 1-26, March.
    11. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    12. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    13. Chun-Yao Lee & Maickel Tuegeh, 2020. "An Optimal Solution for Smooth and Non-Smooth Cost Functions-Based Economic Dispatch Problem," Energies, MDPI, vol. 13(14), pages 1-16, July.
    14. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    15. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    16. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    17. Wisam Kareem Meteab & Salwan Ali Habeeb Alsultani & Francisco Jurado, 2023. "Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer," Energies, MDPI, vol. 16(16), pages 1-18, August.
    18. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    19. McLarty, Dustin & Panossian, Nadia & Jabbari, Faryar & Traverso, Alberto, 2019. "Dynamic economic dispatch using complementary quadratic programming," Energy, Elsevier, vol. 166(C), pages 755-764.
    20. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1796-:d:230317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.