IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7267593.html
   My bibliography  Save this article

Improved Firefly Algorithm: A Novel Method for Optimal Operation of Thermal Generating Units

Author

Listed:
  • Thang Trung Nguyen
  • Nguyen Vu Quynh
  • Le Van Dai

Abstract

This paper presents a novel improved firefly algorithm (IFA) to deal the problem of the optimal operation of thermal generating units (OOTGU) with the purpose of reducing the total electricity generation fuel cost. The proposed IFA is developed based on combining three improvements. The first is to be based on the radius between two solutions, the second is updated step size for each considered solution based on different new equations, and the third is to slightly modify a formula producing new solutions by using normally distributed random numbers and canceling uniform random numbers of conventional firefly algorithm (FA). The effect of each proposed improvement on IFA is investigated by executing five benchmark functions and two different systems. The performance of IFA is investigated on six other study cases consisting of different types of objective function and complex level of constraints. The objective function considers single fuel with quadratic form and nonconvex form, and multifuels with the sum of several quadratic and nonconvex functions while a set of constraints taken into account are power loss, prohibited zone, ramp rate limit, spinning reserve, and all constraints in transmission power networks. The obtained results indicate the proposed improvements in terms of high optimal solution quality, stabilization of search ability, and fast convergence compared with FA. In addition, the comparisons with other methods also lead to a conclusion that the proposed method is a very promising optimization tool for systems with quadratic fuel cost function and with complicated constraints.

Suggested Citation

  • Thang Trung Nguyen & Nguyen Vu Quynh & Le Van Dai, 2018. "Improved Firefly Algorithm: A Novel Method for Optimal Operation of Thermal Generating Units," Complexity, Hindawi, vol. 2018, pages 1-23, July.
  • Handle: RePEc:hin:complx:7267593
    DOI: 10.1155/2018/7267593
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/7267593.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/7267593.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7267593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chi Kien & Thang Trung Nguyen & Chiem Trong Hien & Minh Quan Duong, 2019. "A Novel Social Spider Optimization Algorithm for Large-Scale Economic Load Dispatch Problem," Energies, MDPI, vol. 12(6), pages 1-26, March.
    2. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    3. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
    4. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    5. Alaa A. K. Ismaeel & Essam H. Houssein & Doaa Sami Khafaga & Eman Abdullah Aldakheel & Ahmed S. AbdElrazek & Mokhtar Said, 2023. "Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7267593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.